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Preface

This book applies the deductive method to programming by affiliating
programs with the abstract mathematical theories that enable them to work.
Specification of these theories, algorithms written in terms of these theories,
and theorems and lemmas describing their properties are presented together.
The implementation of the algorithms in a real programming language is
central to the book. While the specifications, which are addressed to human
beings, should, and even must, combine rigor with appropriate informality,
the code, which is addressed to the computer, must be absolutely precise
even while being general.

As with other areas of science and engineering, the appropriate founda-
tion of programming is the deductive method. It facilitates the decompo-
sition of complex systems into components with mathematically specified
behavior. That, in turn, is a necessary precondition for designing efficient,
reliable, secure, and economical software.

The book is addressed to those who want a deeper understanding of pro-
gramming, whether they are full-time software developers, or scientists and
engineers for whom programming is an important part of their professional
activity.

The book is intended to be read from beginning to end. Only by reading
the code, proving the lemmas, and doing the exercises can readers gain
understanding of the material. In addition, we suggest several projects,
some open-ended. While the book is terse, a careful reader will eventually
see the connections between its parts and the reasons for our choice of
material. Discovering the architectural principles of the book should be the
reader’s goal.

We assume an ability to do elementary algebraic manipulations.! We
also assume familiarity with the basic vocabulary of logic and set theory

1. For a refresher on elementary algebra, we recommend [ ].

xi



xii Preface

at the level of undergraduate courses on discrete mathematics; Appendix A
summarizes the notation that we use. We provide definitions of a few con-
cepts of abstract algebra when they are needed to specify algorithms. We
assume programming maturity and understanding of computer architecture?
and fundamental algorithms and data structures.?

We chose C++ because it combines powerful abstraction facilities with
faithful representation of the underlying machine. We use a small subset
of the language and write requirements as structured comments. We hope
that readers not already familiar with C++ are able to follow the book. Ap-
pendix B specifies the subset of the language used in the book.” Wherever
there is a difference between mathematical notation and C++, the typeset-
ting and the context determine whether the mathematical or C++ meaning
applies. While many concepts and programs in the book have parallels in
STL (the C++ Standard Template Library), the book departs from some of
the STL design decisions. The book also ignores issues that a real library,
such as STL, has to address: namespaces, visibility, inline directives, and so
on.

Chapter 1 describes values, objects, types, procedures, and concepts.
Chapters 2-5 describe algorithms on algebraic structures, such as semi-
groups and totally ordered sets. Chapters 6-11 describe algorithms on ab-
stractions of memory. Chapter 12 describes objects containing other ob-
jects. The afterword presents our reflections on the approach presented by
the book.
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2. We recommend [ ]
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mend [ ]

4. The standard reference is [ ].

5. The code in the book compiles and runs under Microsoft Visual C++ 9 and g++ 4.

This code, together with a few trivial macros that enable it to compile, as well as unit
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Chapter 1

Foundations

Sfartmg with a brief tazonomy of ideas, we introduce notions of value,
object, type, procedure, and concept that represent different categories of
ideas in the computer. A central notion of the book, regularity, is introduced
and elaborated. When applied to procedures, reqularity means that procedures
return equal results for equal arguments. When applied to types, reqularity
means that types possess the equality operator and equality-preserving copy
construction and assignment. Regularity enables us to apply equational rea-
soning (substituting equals for equals) to transform and optimize programs.

1.1 Categories of Ideas: Entity, Species,

Genus

In order to explain what objects, types, and other foundational computer
notions are, it is useful to give an overview of some categories of ideas that
correspond to these notions.

An abstract entity is an individual thing that is eternal and unchange-
able, while a concrete entity is an individual thing that comes into and out
of existence in space and time. An attribute—a correspondence between a
concrete entity and an abstract entity—describes some property, measure-
ment, or quality of the concrete entity. Identity, a primitive notion of our
perception of reality, determines the sameness of a thing changing over time.
Attributes of a concrete entity can change without affecting its identity. A
snapshot of a concrete entity is a complete collection of its attributes at
a particular point in time. Concrete entities are not only physical entities
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but also legal, financial, or political entities. Blue and 13 are examples of
abstract entities. Socrates and the United States of America are examples
of concrete entities. The color of Socrates’ eyes and the number of U.S.
states are examples of attributes.

An abstract species describes common properties of essentially equivalent
abstract entities. Examples of abstract species are natural number and color.
A concrete species describes the set of attributes of essentially equivalent
concrete entities. Examples of concrete species are man and U.S. state.

A function is a rule that associates one or more abstract entities, called
arguments, from corresponding species with an abstract entity, called the
result, from another species. Examples of functions are the successor func-
tion, which associates each natural number with the one that immediately
follows it, and the function that associates with two colors the result of
blending them.

An abstract genus describes different abstract species that are similar in
some respect. Examples of abstract genera are number and binary operator.
A concrete genus describes different concrete species similar in some respect.
Examples of concrete genera are mammal and biped.

An entity belongs to a single species, which provides the rules for its
construction or existence. An entity can belong to several genera, each of
which describes certain properties.

We show later in the chapter that objects and values represent entities,
types represent species, and concepts represent genera.

1.2 Values

Unless we know the interpretation, the only things we see in a computer are
Os and 1s. A datum is a finite sequence of 0s and 1s.

A walue type is a correspondence between a species (abstract or concrete)
and a set of datums. A datum corresponding to a particular entity is called
a representation of the entity; the entity is called the interpretation of the
datum. We refer to a datum together with its interpretation as a wvalue.
Examples of values are integers represented in 32-bit two’s complement big-
endian format and rational numbers represented as a concatenation of two
32-bit sequences, interpreted as integer numerator and denominator, repre-
sented as two’s complement big-endian values.

A datum is well formed with respect to a value type if and only if that
datum represents an abstract entity. For example, every sequence of 32 bits
is well formed when interpreted as a two’s-complement integer; an IEEE 754
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floating-point NaN (Not a Number) is not well formed when interpreted as
a real number.

A value type is properly partial if its values represent a proper subset of
the abstract entities in the corresponding species; otherwise it is total. For
example, the type int is properly partial, while the type bool is total.

A value type is uniquely represented if and only if at most one value
corresponds to each abstract entity. For example, a type representing a
truth value as a byte that interprets zero as false and nonzero as true is not
uniquely represented. A type representing an integer as a sign bit and an
unsigned magnitude does not provide a unique representation of zero. A
type representing an integer in two’s complement is uniquely represented.

A value type is ambiguous if and only if a value of the type has more
than one interpretation. The negation of ambiguous is unambiguous. For
example, a type representing a calendar year over a period longer than a
single century as two decimal digits is ambiguous.

Two values of a value type are equal if and only if they represent the
same abstract entity. They are representationally equal if and only if their
datums are identical sequences of Os and 1s.

Lemma 1.1 If a value type is uniquely represented, equality implies repre-
sentational equality.

Lemma 1.2 If a value type is not ambiguous, representational equality
implies equality.

If a value type is uniquely represented, we implement equality by test-
ing that both sequences of Os and 1s are the same. Otherwise we must
implement equality in such a way that preserves its consistency with the in-
terpretations of its arguments. Nonunique representations are chosen when
testing equality is done less frequently than operations generating new val-
ues and when it is possible to make generating new values faster at the cost
of making equality slower. For example, two rational numbers represented
as pairs of integers are equal if they reduce to the same lowest terms. Two
finite sets represented as unsorted sequences are equal if, after sorting and
eliminating duplicates, their corresponding elements are equal.

Sometimes, implementing true behavioral equality is too expensive or
even impossible, as in the case for a type of encodings of computable func-
tions. In these cases we must settle for the weaker representational equality:
that two values are the same sequence of Os and 1s.

Computers implement functions on abstract entities as functions on val-
ues. While values reside in memory, a properly implemented function on
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values does not depend on particular memory addresses: It implements a
mapping from values to values.

A function defined on a value type is regular if and only if it respects
equality: Substituting an equal value for an argument gives an equal result.
Most numeric functions are regular. An example of a numeric function
that is not regular is the function that returns the numerator of a rational
number represented as a pair of integers, since % = 7, but numerator(%) =+
numerator(%). Regular functions allow equational reasoning: substituting
equals for equals.

A nonregular function depends on the representation, not just the inter-
pretation, of its argument. When designing the representation for a value
type, two tasks go hand in hand: implementing equality and deciding which

functions will be regular.

1.3 Objects

A memory is a set of words, each with an address and a content. The
addresses are values of a fixed size, called the address length. The contents
are values of another fixed size, called the word length. The content of an
address is obtained by a load operation. The association of a content with
an address is changed by a store operation. Examples of memories are bytes
in main memory and blocks on a disk drive.

An object is a representation of a concrete entity as a value in memory.
An object has a state that is a value of some value type. The state of an
object is changeable. Given an object corresponding to a concrete entity,
its state corresponds to a snapshot of that entity. An object owns a set of
resources, such as memory words or records in a file, to hold its state.

While the value of an object is a contiguous sequence of Os and 1s, the
resources in which these Os and 1s are stored are not necessarily contiguous.
It is the interpretation that gives unity to an object. For example, two
doubles may be interpreted as a single complex number even if they are not
adjacent. The resources of an object might even be in different memories.
This book, however, deals only with objects residing in a single memory
with one address space. Every object has a unique starting address, from
which all its resources can be reached.

An object type is a pattern for storing and modifying values in memory.
Corresponding to every object type is a value type describing states of ob-
jects of that type. Every object belongs to an object type. An example of an
object type is integers represented in 32-bit two’s complement little-endian
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format aligned to a 4-byte address boundary.

Values and objects play complementary roles. Values are unchanging and
are independent of any particular implementation in the computer. Objects
are changeable and have computer-specific implementations. The state of
an object at any point in time can be described by a value; this value could
in principle be written down on paper (making a snapshot) or serialized
and sent over a communication link. Describing the states of objects in
terms of values allows us to abstract from the particular implementations of
the objects when discussing equality. Functional programming deals with
values; imperative programming deals with objects.

We use values to represent entities. Since values are unchanging, they can
represent abstract entities. Sequences of values can also represent sequences
of snapshots of concrete entities. Objects hold values representing entities.
Since objects are changeable, they can represent concrete entities by taking
on a new value to represent a change in the entity. Objects can also represent
abstract entities: staying constant or taking on different approximations to
the abstract.

We use objects in the computer for the following three reasons.

1. Objects model changeable concrete entities, such as employee records
in a payroll application.

2. Objects provide a powerful way to implement functions on values,
such as a procedure implementing the square root of a floating-point

number using an iterative algorithm.

3. Computers with memory constitute the only available realization of a
universal computational device.

Some properties of value types carry through to object types. An object
is well formed if and only if its state is well formed. An object type is
properly partial if and only if its value type is properly partial; otherwise it
is total. An object type is uniquely represented if and only if its value type
is uniquely represented.

Since concrete entities have identities, objects representing them need
a corresponding notion of identity. An identity token is a unique value
expressing the identity of an object and is computed from the value of the
object and the address of its resources. Examples of identity tokens are the
address of the object, an index into an array where the object is stored,
and an employee number in a personnel record. Testing equality of identity
tokens corresponds to testing identity. During the lifetime of an application,
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a particular object could use different identity tokens as it moves either
within a data structure or from one data structure to another.

Two objects of the same type are equal if and only if their states are
equal. If two objects are equal, we say that one is a copy of the other.
Making a change to an object does not affect any copy of it.

This book uses a programming language that has no way to describe
values and value types as separate from objects and object types. So from
this point on, when we refer to types without qualification, we mean object
types.

1.4 Procedures

A procedure is a sequence of instructions that modifies the state of some
objects; it may also construct or destroy objects.

The objects with which a procedure interacts can be divided into four
kinds, corresponding to the intentions of the programmer.

1. Input/output consists of objects passed to/from a procedure directly
or indirectly through its arguments or returned result.

2. Local state consists of objects created, destroyed, and usually modified
during a single invocation of the procedure.

3. Global state consists of objects accessible to this and other procedures

across multiple invocations.

4. Own state consists of objects accessible only to this procedure (and
its affiliated procedures) but shared across multiple invocations.

An object is passed directly if it is passed as an argument or returned as
the result and is passed indirectly if it is passed via a pointer or pointerlike
object. An object is an input to a procedure if it is read, but not modified,
by the procedure. An object is an output from a procedure if it is written,
created, or destroyed by the procedure, but its initial state is not read by
the procedure. An object is an input/output of a procedure if it is modified
as well as read by the procedure.

A computational basis for a type is a finite set of procedures that enable
the construction of any other procedure on the type. A basis is efficient if
and only if any procedure implemented using it is as efficient as an equivalent
procedure written in terms of an alternative basis. For example, a basis
for unsigned k-bit integers providing only zero, equality, and the successor
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function is not efficient, since the complexity of addition in terms of successor
is exponential in k.

A basis is expressive if and only if it allows compact and convenient
definitions of procedures on the type. In particular, all the common math-
ematical operations need to be provided when they are appropriate. For
example, subtraction could be implemented using negation and addition
but should be included in an expressive basis. Similarly, negation could
be implemented using subtraction and zero but should be included in an
expressive basis.

1.5 Regular Types

There is a set of procedures whose inclusion in the computational basis of a
type lets us place objects in data structures and use algorithms to copy ob-
jects from one data structure to another. We call types having such a basis
regular, since their use guarantees regularity of behavior and, therefore, in-
teroperability.! We derive the semantics of regular types from built-in types,
such as bool, int, and, when restricted to well-formed values, double. A
type is regular if and only if its basis includes equality, assignment, destruc-
tor, default constructor, copy constructor, total ordering,? and underlying
type.?

Equality is a procedure that takes two objects of the same type and
returns true if and only if the object states are equal. Inequality is always
defined and returns the negation of equality. We use the following notation:

Specifications | C++
Equality a=b a ==

Inequality a#b al=b

Assignment is a procedure that takes two objects of the same type and
makes the first object equal to the second without modifying the second.
The meaning of assignment does not depend on the initial value of the first
object. We use the following notation:

‘ Specifications ‘ C++
Assignment ‘ a+b ‘ a=>b

1. While regular types underlie the design of STL, they were first formally introduced in
[2000].
2. Strictly speaking, as becomes clear in Chapter 4, it could be either total ordering or

default total ordering.
3. Underlying type is defined in Chapter 12.
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A destructor is a procedure causing the cessation of an object’s existence.
After a destructor has been called on an object, no procedure can be applied
to it, and its former memory locations and resources may be reused for other
purposes. The destructor is normally invoked implicitly. Global objects
are destroyed when the application terminates, local objects are destroyed
when the block in which they are declared is exited, and elements of a data
structure are destroyed when the data structure is destroyed.

A constructor is a procedure transforming memory locations into an
object. The possible behaviors range from doing nothing to establishing a
complex object state.

An object is in a partially formed state if it can be assigned to or de-
stroyed. For an object that is partially formed but not well formed, the
effect of any procedure other than assignment (only on the left side) and
destruction is not defined.

Lemma 1.3 A well-formed object is partially formed.

A default constructor takes no arguments and leaves the object in a
partially formed state. We use the following notation:

C++
Local object of type T T a;

Anonymous object of type T | TO

A copy constructor takes an additional argument of the same type and
constructs a new object equal to it. We use the following notation:

| C++
Local copy of object b ‘ T a=b;

1.6 Regular Procedures

A procedure is regular if and only if replacing its inputs with equal objects
results in equal output objects. As with value types, when defining an
object type we must make consistent choices in how to implement equality
and which procedures on the type will be regular.

Exercise 1.1 Extend the notion of regularity to input/output objects of a
procedure, that is, to objects that are modified as well as read.

While regularity is the default, there are reasons for nonregular behavior
of procedures.
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1. A procedure returns the address of an object; for example, the built-in
function addressof.

2. A procedure returns a value determined by the state of the real world,
such as the value of a clock or other device.

3. A procedure returns a value depending on own state; for example, a
pseudorandom number generator.

4. A procedure returns a representation-dependent attribute of an object,
such as the amount of reserved memory for a data structure.

A functional procedure is a regular procedure defined on regular types,
with one or more direct inputs and a single output that is returned as the
result of the procedure. The regularity of functional procedures allows two
techniques for passing inputs. When the size of the parameter is small or if
the procedure needs a copy it can mutate, we pass it by value, making a local
copy. Otherwise we pass it by constant reference. A functional procedure can
be implemented as a C++ function, function pointer, or function object.*

This is a functional procedure:

int plus_O(int a, int b)
{

return a + b;

This is a semantically equivalent functional procedure:

int plus_1(const int& a, const int& b)
{

return a + b;

This is semantically equivalent but is not a functional procedure, because
its inputs and outputs are passed indirectly:

void plus_2(int* a, int* b, int* c)
{

*C = xa + *Db;

In plus_2, a and b are input objects, while ¢ is an output object. The
notion of a functional procedure is a syntactic rather than semantic property:
In our terminology, plus_2 is regular but not functional.

4. C++ functions are not objects and cannot be passed as arguments; C++ function
pointers and function objects are objects and can be passed as arguments.



10 Foundations

The definition space for a functional procedure is that subset of values
for its inputs to which it is intended to be applied. A functional procedure
always terminates on input in its definition space; while it may terminate
for input outside its definition space, it may not return a meaningful value.

A homogeneous functional procedure is one whose input objects are all
the same type. The domain of a homogeneous functional procedure is the
type of its inputs. Rather than defining the domain of a nonhomogeneous
functional procedure as the direct product of its input types, we refer indi-
vidually to the input types of a procedure.

The codomain for a functional procedure is the type of its output. The
result space for a functional procedure is the set of all values from its
codomain returned by the procedure for inputs from its definition space.

Consider the functional procedure
int square(int n) { return n * n; }

While its domain and codomain are int, its definition space is the set
of integers whose square is representable in the type, and its result space is
the set of square integers representable in the type.

Exercise 1.2 Assuming that int is a 32-bit two’s complement type, deter-
mine the exact definition and result space.

1.7 Concepts

A procedure using a type depends on syntactic, semantic, and complexity
properties of the computational basis of the type. Syntactically it depends
on the presence of certain literals and procedures with particular names
and signatures. Its semantics depend on properties of these procedures. Its
complexity depends on the time and space complexity of these procedures.
A program remains correct if a type is replaced by a different type with
the same properties. The utility of a software component, such as a library
procedure or data structure, is increased by designing it not in terms of
concrete types but in terms of requirements on types expressed as syntactic
and semantic properties. We call a collection of requirements a concept.
Types represent species; concepts represent genera.

In order to describe concepts, we need several mechanisms dealing with
types: type attributes, type functions, and type constructors. A type at-
tribute is a mapping from a type to a value describing some characteristic
of the type. Examples of type attributes are the built-in type attribute
sizeof (T) in C++, the alignment of an object of a type, and the number
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of members in a struct. If F is a functional procedure type, Arity(F) re-
turns its number of inputs. A type function is a mapping from a type to an
affiliated type. An example of a type function is: given “pointer to T,” the
type T. In some cases it is useful to define an indexed type function with
an additional constant integer parameter. For example, a type function re-
turning the type of the ith member of a structure type (counting from 0).
If F is a functional procedure type, the type function Codomain(F) returns
the type of the result. If F is a functional procedure type and 1 < Arity(F),
the indexed type function InputType(F,1) returns the type of the ith param-
eter (counting from 0).° A type constructor is a mechanism for creating a
new type from one or more existing types. For example, pointer(T) is the
built-in type constructor that takes a type T and returns the type “pointer
to T”; struct is a built-in n-ary type constructor; a structure template is a
user-defined n-ary type constructor.

If 7 is an n-ary type constructor, we usually denote its application to
types To, ..., Th—1 as T1,, . T, ,. Animportant example is pair, which, when
applied to regular types Top and Ty, returns a struct type pairg 1, with a
member mO of type Ty and a member m1 of type T;. To ensure that the type
pairy, 1, is itself regular, equality, assignment, destructor, and constructors
are defined through memberwise extensions of the corresponding operations
on the types Tg and T;. The same technique is used for any tuple type,
such as triple. In Chapter 12 we show the implementation of pairy, 1, and
describe how regularity is preserved by more complicated type constructors.

Somewhat more formally, a concept is a description of requirements on
one or more types stated in terms of the existence and properties of proce-
dures, type attributes, and type functions defined on the types. We say that
a concept is modeled by specific types, or that the types model the concept,
if the requirements are satisfied for these types. To assert that a concept
C is modeled by types T, ..., Tn_1, we write C(Tp,..., Th_1). Concept €’
refines concept C if whenever C’ is satisfied for a set of types, € is also
satisfied for those types. We say that € weakens €' if €’ refines C.

A type concept is a concept defined on one type. For example, C++ de-
fines the type concept integral type, which is refined by unsigned integral type
and by signed integral type, while STL defines the type concept sequence.
We use the primitive type concepts Regular and FunctionalProcedure, cor-
responding to the informal definitions we gave earlier.

We define concepts formally by using standard mathematical notation.
To define a concept €, we write

5. Appendix B shows how to define type attributes and type functions in C++.
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C(To, ..., Ta1) &
&o
N &1
AN
N Exq
where £ is read as “is equal to by definition,” the T; are formal type pa-
rameters, and the &; are concept clauses, which take one of three forms:

1. Application of a previously defined concept, indicating a subset of the
type parameters modeling it.

2. Signature of a type attribute, type function, or procedure that must
exist for any types modeling the concept. A procedure signature takes
the form f: T — T’, where T is the domain and T’ is the codomain. A
type function signature takes the form F: € — €', where the domain
and codomain are concepts.

3. Axiom expressed in terms of these type attributes, type functions, and
procedures.

We sometimes include the definition of a type attribute, type function,
or procedure following its signature in the second kind of concept clause. It
takes the form x — F(x) for some expression F. In a particular model, such
a definition could be overridden with a different but consistent implemen-
tation.

For example, this concept describes a unary functional procedure:
UnaryFunction(F) £

Functional Procedure (F)

A Arity(F) =1
/A Domain : UnaryFunction — Regular
F — InputType(F,0)

This concept describes a homogeneous functional procedure:
HomogeneousFunction(F) £
FunctionalProcedure(F)
A Arity(F) >0
A (Vi,j € N)(i,j < Arity(F)) = (InputType(F, i) = InputType(F,j))
/A Domain : HomogeneousFunction — Regular
F — InputType(F,0)
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Observe that
(VF € FunctionalProcedure) UnaryFunction(F) = HomogeneousFunction(F)

An abstract procedure is parameterized by types and constant values,
with requirements on these parameters.® We use function templates and
function object templates. The parameters follow the template keyword
and are introduced by typename for types and int or another integral type
for constant values. Requirements are specified via the requires clause,
whose argument is an expression built up from constant values, concrete
types, formal parameters, applications of type attributes and type functions,
equality on values and types, concepts, and logical connectives.”

Here is an example of an abstract procedure:

template<typename Op>
requires(BinaryOperation(Op))

Domain(0Op) square(const Domain(Op)& x, Op op)

{

return op(x, x);

The domain values could be large, so we pass them by constant refer-
ence. Operations tend to be small (e.g., a function pointer or small function
object), so we pass them by value.

Concepts describe properties satisfied by all objects of a type, whereas
preconditions describe properties of particular objects. For example, a pro-
cedure might require a parameter to be a prime number. The requirement
for an integer type is specified by a concept, while primality is specified by
a precondition. The type of a function pointer expresses only its signature,
not its semantic properties. For example, a procedure might require a pa-
rameter to be a pointer to a function implementing an associative binary
operation on integers. The requirement for a binary operation on integers
is specified by a concept; associativity of a particular function is specified
by a precondition.

To define a precondition for a family of types, we need to use mathe-
matical notation, such as universal and existential quantifiers, implication,

and so on. For example, to specify the primality of an integer, we define

6. Abstract procedures appeared, in substantially the form we use them, in 1930 in
[ |, which was based on the lectures of Emmy Noether and Emil Artin.
George Collins and David Musser used them in the context of computer algebra in the

late 1960s and early 1970s. See, for example, [ ].
7.See Appendix B for the full syntax of the requires clause.
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property(N : Integer)
prime : N
n=(ZDANMuveN)w=n= (u=1V=1)

where the first line introduces formal type parameters and the concepts they
model, the second line names the property and gives its signature, and the
third line gives the predicate establishing whether the property holds for a
given argument.

To define regularity of a unary functional procedure, we write

property(F : UnaryFunction)
regular_unary_function : F
fi— (Vf’ € F)(Vx,x’ € Domain(F))
(f=1f"Ax=x')= (f(x) =f'(x))

The definition easily extends to n-ary functions: Application of equal
functions to equal arguments gives equal results. By extension, we call an
abstract function regular if all its instantiations are regular. In this book
every procedural argument is a regular function unless otherwise stated; we
omit the precondition stating this explicitly.

Project 1.1 Extend the notions of equality, assignment, and copy construc-
tion to objects of distinct types. Think about the interpretations of the two
types and axioms that connect cross-type procedures.

1.8 Conclusions

The commonsense view of reality humans share has a representation in
the computer. By grounding the meanings of values and objects in their
interpretations, we obtain a simple, coherent view. Design decisions, such
as how to define equality, become straightforward when the correspondence
to entities is taken into account.



Chapter 2

Transformations and
Their Orbits

Tn's chapter defines a transformation as a unary reqular function from
a type to itself. Successive applications of a transformation starting from an
initial value determine an orbit of this value. Depending only on the reg-
ularity of the transformation and the finiteness of the orbit, we implement
an algorithm for determining orbit structures that can be used in different
domains. For example, it could be used to detect a cycle in a linked list or
to analyze a pseudorandom number generator. We derive an interface to
the algorithm as a set of related procedures and definitions for their argu-
ments and results. This analysis of an orbit-structure algorithm allows us

to introduce our approach to programming in the simplest possible setting.

2.1 Transformations

While there are functions from any sequence of types to any type, particular
classes of signatures commonly occur. In this book we frequently use two
such classes: homogeneous predicates and operations. Homogeneous predi-
cates are of the form T x...x T — bool; operations are functions of the form
Tx...xT— T. While there are n-ary predicates and n-ary operations, we
encounter mostly unary and binary homogeneous predicates and unary and
binary operations.
A predicate is a functional procedure returning a truth value:

15
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Predicate(P) &
FunctionalProcedure(P)
/A Codomain(P) = bool

A homogeneous predicate is one that is also a homogeneous function:
HomogeneousPredicate(P) £
Predicate(P)

N\ HomogeneousFunction(P)
A unary predicate is a predicate taking one parameter:

UnaryPredicate(P) £
Predicate(P)
A UnaryFunction(P)

An operation is a homogeneous function whose codomain is equal to its
domain:
Operation(Op) £

HomogeneousFunction(Op)

/A Codomain(Op) = Domain(Op)

Examples of operations:

int abs(int x)
{

if (x < 0) return -x; else return x;
} // unary operation

double euclidean_norm(double x, double y)
{
return sqrt(x * x + y * y);

} // binary operation

double euclidean_norm(double x, double y, double z)
{
return sqrt(x * x +y *x y + z x 2z);

} // ternary operation
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Lemma 2.1
euclidean_norm(x, y, z) = euclidean_norm(euclidean_norm(x,y), z)

This lemma shows that the ternary version can be obtained from the
binary version. For reasons of efficiency, expressiveness, and, possibly, ac-
curacy, the ternary version is part of the computational basis for programs
dealing with three-dimensional space.

A procedure is partial if its definition space is a subset of the direct
product of the types of its inputs; it is total if its definition space is equal to
the direct product. We follow standard mathematical usage, where partial
function includes total function. We call partial procedures that are not
total montotal. Implementations of some total functions are nontotal on
the computer because of the finiteness of the representation. For example,
addition on signed 32-bit integers is nontotal.

A nontotal procedure is accompanied by a precondition specifying its
definition space. To verify the correctness of a call of that procedure, we
must determine that the arguments satisfy the precondition. Sometimes,
a partial procedure is passed as a parameter to an algorithm that needs
to determine at runtime the definition space of the procedural parameter.
To deal with such cases, we define a definition-space predicate with the
same inputs as the procedure; the predicate returns true if and only if the
inputs are within the definition space of the procedure. Before a nontotal
procedure is called, either its precondition must be satisfied, or the call must
be guarded by a call of its definition-space predicate.

Exercise 2.1 Implement a definition-space predicate for addition on 32-bit
signed integers.

This chapter deals with unary operations, which we call transformations:

Transformation(F) =
Operation(F)
A UnaryFunction(F)
/\ DistanceType : Transformation — Integer

We discuss DistanceType in the next section.

Transformations are self-composable: f(x), f(f(x)), f(f(f(x))), and so on.
This ability to self-compose, together with the ability to test for equality,
allows us to define interesting algorithms.



18 Transformations and Their Orbits

When f is a transformation, we define its powers as follows:

X ifn=0,
(x) =
fl(f(x)) ifn>0
To implement an algorithm to compute f™(x), we need to specify the
requirement for an integer type. We study various concepts describing in-
tegers in Chapter 5. For now we rely on the intuitive understanding of
integers. Their models include signed and unsigned integral types, as well
as arbitrary-precision integers, with these operations and literals:

Specifications | C++
Sum + +
Difference — -
Product . *
Quotient / /
Remainder mod %
Zero 0 1(0)
One 1 I(1)
Two 2 I(2)

where I is an integer type.
That leads to the following algorithm:

template<typename F, typename N>
requires(Transformation(F) && Integer (N))

Domain(F) power_unary(Domain(F) x, N n, F f)

{
// Precondition: n > 0/ (Vi € N)0 < i< n= fi(x) is defined
while (n != N(0)) {
n=n- N1);
x = £(x);
}
return Xx;
}

2.2 Orbits

To understand the global behavior of a transformation, we examine the
structure of its orbits: elements reachable from a starting element by re-
peated applications of the transformation. y is reachable from x under a
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transformation f if for some n > 0, y = f™(x). x is cyclic under f if for
some n > 1, x = f™(x). x is terminal under f if and only if x is not in the
definition space of f. The orbit of x under a transformation f is the set of
all elements reachable from x under f.

Lemma 2.2 An orbit does not contain both a cyclic and a terminal element.
Lemma 2.3 An orbit contains at most one terminal element.

If y is reachable from x under f, the distance from x to y is the least
number of transformation steps from x to y. Obviously, distance is not
always defined.

Given a transformation type F, DistanceType(F) is an integer type large
enough to encode the maximum number of steps by any transformation f € F
from one element of T = Domain(F) to another. If type T occupies k bits,
there can be as many as 25 values but only 2% — 1 steps between distinct
values. Thus if T is a fixed-size type, an unsigned integral type of the same
size is a valid distance type for any transformation on T. (Instead of using
the distance type, we allow the use of any integer type in power_unary, since
the extra generality does not appear to hurt there.) It is often the case that
all transformation types over a domain have the same distance type. In
this case the type function DistanceType is defined for the domain type and
defines the corresponding type function for the transformation types.

The existence of DistanceType leads to the following procedure:

template<typename F>
requires(Transformation(F))
DistanceType(F) distance(Domain(F) x, Domain(F) y, F f)
{
// Precondition: y is reachable from x under f
typedef DistanceType(F) N;
N n(0);
while (x !=y) {
£(x);
n + N(1);

X

n

3

return n;

Orbits have different shapes. An orbit of x under a transformation is
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Figure 2.1: Orbit Shapes

infinite  if it has no cyclic or terminal elements
terminating if it has a terminal element
circular  if x is cyclic
p-shaped if x is not cyclic, but its orbit contains a cyclic element

An orbit of x is finite if it is not infinite. Figure 2.1 illustrates the various
cases.

The orbit cycle is the set of cyclic elements in the orbit and is empty
for infinite and terminating orbits. The orbit handle, the complement of
the orbit cycle with respect to the orbit, is empty for a circular orbit. The
connection point is the first cyclic element, and is the first element of a
circular orbit and the first element after the handle for a p-shaped orbit.
The orbit size o of an orbit is the number of distinct elements in it. The
handle size h of an orbit is the number of elements in the orbit handle. The
cycle size ¢ of an orbit is the number of elements in the orbit cycle.

Lemma 2.40=h-+c

Lemma 2.5 The distance from any point in an orbit to a point in a cycle
of that orbit is always defined.

Lemma 2.6 If x and y are distinct points in a cycle of size c,
¢ = distance(x, y, f) + distance(y, x, f)

Lemma 2.7 If x and y are points in a cycle of size c, the distance from x
to y satisfies
0 < distance(x,y,f) < c
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2.3 Collision Point

If we observe the behavior of a transformation, without access to its defi-
nition, we cannot determine whether a particular orbit is infinite: It might
terminate or cycle back at any point. If we know that an orbit is finite, we
can use an algorithm to determine the shape of the orbit. Therefore there
is an implicit precondition of orbit finiteness for all the algorithms in this
chapter.

There is, of course, a naive algorithm that stores every element visited
and checks at every step whether the new element has been previously en-
countered. Even if we could use hashing to speed up the search, such an
algorithm still would require linear storage and would not be practical in
many applications. However, there is an algorithm that requires only a
constant amount of storage.

The following analogy helps to understand the algorithm. If a fast car
and a slow one start along a path, the fast one will catch up with the slow
one if and only if there is a cycle. If there is no cycle, the fast one will reach
the end of the path before the slow one. If there is a cycle, by the time the
slow one enters the cycle, the fast one will already be there and will catch
up eventually. Carrying our intuition from the continuous domain to the
discrete domain requires care to avoid the fast one skipping past the slow
one.!

The discrete version of the algorithm is based on looking for a point
where fast meets slow. The collision point of a transformation f and a
starting point x is the unique y such that

y= fn(X) _ f2n+1 (X)

and n > 0 is the smallest integer satisfying this condition. This definition
leads to an algorithm for determining the orbit structure that needs one
comparison of fast and slow per iteration. To handle partial transformations,
we pass a definition-space predicate to the algorithm:

template<typename F, typename P>
requires(Transformation(F) && UnaryPredicate(P) &&
Domain(F) == Domain(P))
Domain(F) collision_point(const Domain(F)& x, F £, P p)
{
// Precondition: p(x) < f(x) is defined

1. [ , page 7] attributes this algorithm to Robert W. Floyd.
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if (!p(x)) return x;

Domain(F) slow = x; // slow = f0(x)
Domain(F) fast = f(x); // fast = f1(x)
// <0 (completed iterations)
while (fast !'= slow) { // slow = f*(x) A fast = 21 (x)
slow = f(slow); // slow = f"1(x) A fast = f2" 1 (x)
if (!'p(fast)) return fast;
fast = f(fast); // slow = f*F1(x) A fast = 272 (x)
if (!p(fast)) return fast;
fast = f(fast); // slow = f"F1(x) A fast = 23 (x)
//n—n+1
}
return fast; // slow = f*(x) A fast = 21 (x)

// Postcondition: return value is terminal point or collision point

We establish the correctness of collision_point in three stages: (1) veri-
fying that it never applies f to an argument outside the definition space;
(2) verifying that if it terminates, the postcondition is satisfied; and (3)
verifying that it always terminates.

While f is a partial function, its use by the procedure is well defined,
since the movement of fast is guarded by a call of p. The movement of
slow is unguarded, because by the regularity of f, slow traverses the same
orbit as fast, so f is always defined when applied to slow.

The annotations show that if, after n > 0 iterations, fast becomes equal
to slow, then fast = f2"*1(x) and slow = f*(x). Moreover, n is the
smallest such integer, since we checked the condition for every i < n.

If there is no cycle, p will eventually return false because of finiteness.
If there is a cycle, slow will eventually reach the connection point (the first
element in the cycle). Consider the distance d from fast to slow at the
top of the loop when slow first enters the cycle: 0 < d < c. If d =0, the
procedure terminates. Otherwise the distance from fast to slow decreases
by 1 on each iteration. Therefore the procedure always terminates; when it
terminates, slow has moved a total of h + d steps.

The following procedure determines whether an orbit is terminating:

template<typename F, typename P>
requires(Transformation(F) && UnaryPredicate(P) &&
Domain(F) == Domain(P))
bool terminating(const Domain(F)& x, F £, P p)
{
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// Precondition: p(x) < f(x) is defined
return !p(collision_point(x, £, p));

Sometimes, we know either that the transformation is total or that the
orbit is nonterminating for a particular starting element. For these situa-
tions it is useful to have a specialized version of collision_point:

template<typename F>
requires(Transformation(F))
Domain (F)
collision_point_nonterminating_orbit(const Domain(F)& x, F f)

{

Domain(F) slow = x; // slow = f0(x)
Domain(F) fast = f(x); // fast = f1(x)
// <0 (completed iterations)
while (fast !'= slow) { // slow = f*(x) A fast = 21 (x)
slow = f(slow); // slow = f*1(x) A fast = 21 (x)
fast = f(fast); // slow = "1 (x) A fast = £2"F2(x)
fast = f(fast); // slow = "1 (x) A fast = £2"3(x)
J/m—n+1
}
return fast; // slow = f*(x) A fast = f2n+1(x)

// Postcondition: return value is collision point

In order to determine the cycle structure—handle size, connection point,
and cycle size—we need to analyze the position of the collision point.
When the procedure returns the collision point

fm (X) — f2n+1 (X)

n is the number of steps taken by slow, and 2n + 1 is the number of steps
taken by fast.
n=h+d

where h is the handle size and 0 < d < ¢ is the number of steps taken by
slow inside the cycle. The number of steps taken by fast is

n+1=h+d+qc

where q > 0 is the number of full cycles completed by fast when it collides
with slow. Since n = h+d,

2(h4+d)+1=h+d+qc
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Simplifying gives
gc=h+d+1

Let us represent h modulo c:
h=mc+r
with 0 < 1 < c. Substitution gives
qgc=mc+r+d+1

or

d=(gq—m)c—1r—-1

0 < d < c implies
g—m=1

S0
d=c—71-1

and r + 1 steps are needed to complete the cycle.
Therefore the distance from the collision point to the connection point
is
e=1+1
In the case of a circular orbit h = 0, r = 0, and the distance from the
collision point to the beginning of the orbit is

e=1

Circularity, therefore, can be checked with the following procedures:

template<typename F>

requires(Transformation(F))
bool circular_nonterminating_orbit(const Domain(F)& x, F f)
{

return x == f(collision_point_nonterminating orbit(x, £));

template<typename F, typename P>
requires(Transformation(F) && UnaryPredicate(P) &&
Domain(F) == Domain(P))
bool circular(const Domain(F)& x, F £, P p)
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{
// Precondition: p(x) < f(x) is defined
Domain(F) y = collision_point(x, f, p);
return p(y) && x == £(y);

}

We still don’t know the handle size h and the cycle size c. Determining
the latter is simple once the collision point is known: Traverse the cycle and
count the steps.

To see how to determine h, let us look at the position of the collision

point:

fh+d(x) _ fh+c7r71(xj — ]cmc+r+cf‘r71(x) _ f(m+1)c71(x)

Tn+1)(:+h(x)7

Taking h+1 steps from the collision point gets us to the point f!
which equals f*(x), since (m + 1)c corresponds to going around the cycle
m+ 1 times. If we simultaneously take h steps from x and h+ 1 steps from
the collision point, we meet at the connection point. In other words, the
orbits of x and 1 step past the collision point converge in exactly h steps,

which leads to the following sequence of algorithms:

template<typename F>
requires(Transformation(F))
Domain(F) convergent_point(Domain(F) x0, Domain(F) x1, F f)
{
// Precondition: (3n € DistanceType(F))n = 0 A f™(xq) = f™(x1)
while (x0 != x1) {
x0 = £(x0);
x1 = £(x1);
}

return x0;

template<typename F>
requires(Transformation(F))
Domain (F)
connection_point_nonterminating_orbit(const Domain(F)& x, F f)
{
return convergent_point(

X,
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f(collision_point_nonterminating_orbit(x, £)),
£);

template<typename F, typename P>
requires(Transformation(F) && UnaryPredicate(P) &&
Domain(F) == Domain(P))
Domain(F) connection_point(const Domain(F)& x, F £, P p)
{
// Precondition: p(x) < f(x) is defined
Domain(F) y = collision_point(x, f, p);
if (!p(y)) return y;
return convergent_point(x, f(y), £);

Lemma 2.8 If the orbits of two elements intersect, they have the same
cyclic elements.

Exercise 2.2 Design an algorithm that determines, given a transforma-
tion and its definition-space predicate, whether the orbits of two elements
intersect.

Exercise 2.3 The precondition of convergent_point ensures termination.
Implement an algorithm convergent_point_guarded for use when that pre-
condition is not known to hold, but there is an element in common to the
orbits of both x0 and x1.

2.4 Measuring Orbit Sizes

The natural type to use for the sizes o, h, and c of an orbit on type T would
be an integer count type large enough to count all the distinct values of
type T. If a type T occupies k bits, there can be as many as 2% values, so
a count type occupying k bits could not represent all the counts from 0 to
2%. There is a way to represent these sizes by using distance type.

An orbit could potentially contain all values of a type, in which case o
might not fit in the distance type. Depending on the shape of such an orbit,
h and ¢ would not fit either. However, for a p-shaped orbit, both h and
c fit. In all cases each of these fits: 0 — 1 (the maximum distance in the
orbit), h—1 (the maximum distance in the handle), and c—1 (the maximum
distance in the cycle). That allows us to implement procedures returning a
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triple representing the complete structure of an orbit, where the members
of the triple are as follows:

Case mO0 ml m2
Terminating | h —1 0 terminal element
Circular 0 c—1 X
p-shaped h ¢ —1 | connection point

template<typename F>
requires(Transformation(F))
triple<DistanceType(F), DistanceType(F), Domain(F)>
orbit_structure_nonterminating_orbit(const Domain(F)& x, F f)
{
typedef DistanceType(F) N;
Domain(F) y = connection_point_nonterminating_orbit(x, f);
return triple<N, N, Domain(F)>(distance(x, y, f),
distance(f(y), y, £f),
y);

template<typename F, typename P>
requires(Transformation(F) &&
UnaryPredicate(P) && Domain(F) == Domain(P))
triple<DistanceType(F), DistanceType(F), Domain(F)>
orbit_structure(const Domain(F)& x, F f, P p)

{
// Precondition: p(x) < f(x) is defined
typedef DistanceType(F) N;
Domain(F) y = connection_point(x, f, p);
N m = distance(x, y, f);
N n(0);
if (p(y)) n = distance(f(y), y, £);
// Terminating: m=h—1An=0
// Otherwise: m=hAn=c—1
return triple<N, N, Domain(F)>(m, n, y);
}

Exercise 2.4 Derive formulas for the count of different operations (f, p,
equality) for the algorithms in this chapter.
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Exercise 2.5 Use orbit_structure_nonterminating_orbit to determine the av-
erage handle size and cycle size of the pseudorandom number generators on
your platform for various seeds.

2.5 Actions

Algorithms often use a transformation f in a statement like
x = f(x);

Changing the state of an object by applying a transformation to it defines
an action on the object. There is a duality between transformations and the
corresponding actions: An action is definable in terms of a transformation,

and vice versa:

void a(T& x) { x = £(x); } // action from transformation
and

T £(T x) { a(x); return x; } // transformation from action

Despite this duality, independent implementations are sometimes more
efficient, in which case both action and transformation need to be provided.
For example, if a transformation is defined on a large object and modifies
only part of its overall state, the action could be considerably faster.

Exercise 2.6 Rewrite all the algorithms in this chapter in terms of actions.

Project 2.1 Another way to detect a cycle is to repeatedly test a sin-
gle advancing element for equality with a stored element, while replacing
the stored element at ever increasing intervals. This and other ideas are
described in [ , [ ], and [ ]. Im-
plement other algorithms for orbit analysis, compare their performance for
different applications, and develop a set of recommendations for selecting
the appropriate algorithm.

2.6 Conclusions

Abstraction allowed us to define abstract procedures that can be used in
different domains. Regularity of types and functions is essential to make the
algorithms work: fast and slow follow the same orbit because of regularity.
Developing nomenclature is essential (e.g., orbit kinds and sizes). Affiliated
types, such as distance type, need to be precisely defined.



Chapter 3

Associative Operations

Tn’s chapter discusses associative binary operations. Associativity al-
lows regrouping the adjacent operations. This ability to regroup leads to an
efficient algorithm for computing powers of the binary operation. Regular-
ity enables a variety of program transformations to optimize the algorithm.
We then use the algorithm to compute linear recurrences, such as Fibonacci

numbers, in logarithmic time.

3.1 Associativity

A binary operation is an operation with two arguments:

BinaryOperation(Op) =
Operation(Op)
A Arity(Op) =2

The binary operations of addition and multiplication are central to math-
ematics. Many more are used, such as min, max, conjunction, disjunction,

set union, set intersection, and so on. All these operations are associative:

property(Op : BinaryOperation)
associative : Op
op — (Va, b, c € Domain(Op)) op(op(a,b),c) = op(a, op(b,c))

There are, of course, nonassociative binary operations, such as subtrac-

tion and division.

29



30 Associative Operations

When a particular associative binary operation op is clear from the con-
text, we often use implied multiplicative notation by writing ab instead
of op(a,b). Because of associativity, we do not need to parenthesize an
expression involving two or more applications of op, because all the group-

ings are equivalent: (---(agai)---)an_1 =---=ap(- - (An_2an_1)---) =
apdy - -An_1. When ap = a; = -+ = an_1 = a, we write a™: the nth
power of a.

Lemma 3.1 a™a™ = a™a"™ = a™"™ (powers of the same element com-
mute)

Lemma 3.2 (a™)™ = ™™

It is not, however, always true that (ab)™ = a™b™. This condition holds
only when the operation is commutative.

If f and g are transformations on the same domain, their composition,
g o f, is a transformation mapping x to g(f(x)).

Lemma 3.3 The binary operation of composition is associative.

If we choose some element a of the domain of an associative operation
op and consider the expression op(a,x) as a unary operation with formal
parameter x, we can think of a as the transformation “multiplication by a.”
This justifies the use of the same notation for powers of a transformation, ™,
and powers of an element under an associative binary operation, a™. This
duality allows us to use an algorithm from the previous chapter to prove an
interesting theorem about powers of an associative operation. An element
x has finite order under an associative operation if there exist integers 0 <
n < m such that x™ = x™. An element x is an idempotent element under

an associative operation if x = x2.

Theorem 3.1 An element of finite order has an idempotent power (

[1895]).

Proof. Assume that x is an element of finite order under an associative
operation op. Let g(z) = op(x,z). Since x is an element of finite order, its
orbit under g has a cycle. By its postcondition,

collision_point(x, g) = g™ (x) = g™ (x)
for some n > 0. Thus
g (x) =x"+!
g2 (x) = 22 = 2L (2
and x™*! is the idempotent power of x. O
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Lemma 3.4 collision_point_nonterminating_orbit can be used in the proof.

3.2 Computing Powers

An algorithm to compute a™ for an associative operation op will take a,
n, and op as parameters. The type of a is the domain of op; n must be
of an integer type. Without the assumption of associativity, two algorithms
compute power from left to right and right to left, respectively:

template<typename I, typename Op>

requires(Integer(I) && BinaryOperation(0Op))
Domain(0p) power_left_associated(Domain(Op) a, I n, Op op)
{

// Precondition: n > 0

if (n == I(1)) return a;

return op(power_left_associated(a, n - I(1), op), a);

template<typename I, typename Op>

requires(Integer(I) && BinaryOperation(Op))
Domain(0Op) power_right_associated(Domain(Op) a, I n, Op op)
{

// Precondition: n > 0

if (n == I(1)) return a;

return op(a, power_right_associated(a, n - I(1), op));

The algorithms perform n — 1 operations. They return different results
for a nonassociative operation. Consider, for example, raising 1 to the 3rd
power with the operation of subtraction.

When both a and n are integers, and if the operation is multiplica-
tion, both algorithms give us exponentiation; if the operation is addition,
both give us multiplication. The ancient Egyptians discovered a faster mul-
tiplication algorithm that can be generalized to computing powers of any

associative operation.!

1. The original is in [ , pages 16-17]; the papyrus is from around
1650 BC but its scribe noted that it was a copy of another papyrus from around 1850
BC.
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Since associativity allows us to freely regroup operations, we have

a ifn=1
a™ =< (a?)/? if . is even

(a2)"/2la  if n is odd
which corresponds to
template<typename I, typename Op>

requires(Integer(I) && BinaryOperation(Op))
Domain(0p) power_0(Domain(Op) a, I n, Op op)

{
// Precondition: associative(op) An >0
if (n == I(1)) return a;
if (m % I(2) == I(0))
return power_O(op(a, a), n / I(2), op);
return op(power_O(op(a, a), n / I(2), op), a);
}

Let us count the number of operations performed by power 0 for an
exponent of n. The number of recursive calls is [logon|. Let v be the
number of 1s in the binary representation of n. Each recursive call performs
an operation to square a. Also, v—1 of the calls perform an extra operation.
So the number of operations is

[logayn] + (v —1) < 2[logy

For n =15, |logys n| = 3 and the number of 1s is four, so the formula gives
six operations. A different grouping gives a'® = (a®)®, where a® takes two
operations and a® takes three operations, for a total of five. There are also
faster groupings for other exponents, such as 23, 27, 39, and 43.2

Since power_left_associated does n — 1 operations and power_0 does at
most 2|log, n| operations, it might appear that for very large n, power_0
will always be much faster. This is not always the case. For example,
if the operation is multiplication of univariate polynomials with arbitrary-
precision integer coefficients, power_left_associated is faster.? Even for this
simple algorithm, we do not know how to precisely specify the complexity

requirements that determine which of the two is better.

2. For a comprehensive discussion of minimal-operation exponentiation, see [ s
pages 465—481].
3. See [ ]
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0300

The ability of power_0 to handle very large exponents, say 1 , makes

it crucial for cryptography.?

3.3 Program Transformations

power_0 is a satisfactory implementation of the algorithm and is appropriate
when the cost of performing the operation is considerably larger than the
overhead of the function calls caused by recursion. In this section we derive
the iterative algorithm that performs the same number of operations as
power_0, using a sequence of program transformations that can be used in
many contexts.” For the rest of the book, we only show final or almost-final
versions.

power_0 contains two identical recursive calls. While only one is executed
in a given invocation, it is possible to reduce the code size via common-

subexpression elimination.:

template<typename I, typename Op>
requires(Integer(I) && BinaryOperation(Op))
Domain(0Op) power_1(Domain(Op) a, I n, Op op)

{
// Precondition: associative(op) An >0
if (n == I(1)) return a;
Domain(0Op) r = power_1i(op(a, a), n / I(2), op);
if (m % I(2) !'=1I(0)) r = op(r, a);
return r;
}

Our goal is to eliminate the recursive call. A first step is to transform the
procedure to tail-recursive form, where the procedure’s execution ends with
the recursive call. One of the techniques that allows this transformation is
accumulation-variable introduction, where the accumulation variable carries
the accumulated result between recursive calls:

template<typename I, typename Op>
requires(Integer(I) && BinaryOperation(Op))
Domain(0p) power_accumulate_O(Domain(Op) r, Domain(Op) a, I n,

Op op)

4. See the work on RSA by [ ]

5. Compilers perform similar transformations only for built-in types when the semantics
and complexity of the operations are known. The concept of regularity is an assertion by
the creator of a type that programmers and compilers can safely perform such transfor-
mations.
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{

// Precondition: associative(op) An > 0

if (n == I(0)) return r;

if (m % I(2) !'=I(0)) r = op(r, a);

return power_accumulate_O(r, op(a, a), n / I(2), op);
}

If g, ag, and ng are the original values of r, a, and n, this invariant holds
at every recursive call: ra™ = rpag°®. As an additional benefit, this version
computes not just power but also power multiplied by a coefficient. It also
handles zero as the value of the exponent. However, power_accumulate_0 does
an unnecessary squaring when going from 1 to 0. That can be eliminated
by adding an extra case:

template<typename I, typename Op>
requires(Integer(I) && BinaryOperation(Op))
Domain(0Op) power_accumulate_1(Domain(Op) r, Domain(Op) a, I n,

Op op)

{

// Precondition: associative(op) An >0

if (n == I(0)) return r;

if (n == I(1)) return op(r, a);

if (n % I(2) !'= I(0)) r = op(r, a);

return power_accumulate_1(r, op(a, a), n / I(2), op);
¥

Adding the extra case results in a duplicated subexpression and in three
tests that are not independent. Analyzing the dependencies between the
tests and ordering the tests based on expected frequency gives

template<typename I, typename Op>
requires(Integer(I) && BinaryOperation(Op))
Domain(0p) power_accumulate_2(Domain(Op) r, Domain(Op) a, I n,

Op op)

// Precondition: associative(op) An > 0
if (m % I(2) !'=1(0)) {

r = op(r, a);

if (n == I(1)) return r;
} else if (n == I(0)) return r;

return power_accumulate_2(r, op(a, a), n / I(2), op);
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A strict tail-recursive procedure is one in which all the tail-recursive calls
are done with the formal parameters of the procedure being the correspond-

ing arguments:

template<typename I, typename Op>
requires (Integer(I) && BinaryOperation(0Op))
Domain(0p) power_accumulate_3(Domain(Op) r, Domain(Op) a, I n,

Op op)
{
// Precondition: associative(op) An = 0
if (m % I(2) !'=1(0)) {
r = op(r, a);
if (n == I(1)) return r;
} else if (n == I(0)) return r;
a = op(a, a);
n=n/I(2);
return power_accumulate_3(r, a, n, op);
}

A strict tail-recursive procedure can be transformed to an iterative pro-
cedure by replacing each recursive call with a goto to the beginning of the

procedure or by using an equivalent iterative construct:

template<typename I, typename Op>
requires(Integer(I) && BinaryOperation(Op))
Domain(0p) power_accumulate_4(Domain(Op) r, Domain(Op) a, I n,

Op op)
{
// Precondition: associative(op) An > 0
while (true) {
if (n % I(2) '= 1(0)) {
r = op(r, a);
if (n == I(1)) return r;
} else if (n == I(0)) return r;
= op(a, a);
=n / I1(2);
}
}

The recursion invariant becomes the loop invariant.
If n > 0 initially, it would pass through 1 before becoming 0. We take
advantage of this by eliminating the test for 0 and strengthening the pre-
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condition:

template<typename I, typename Op>
requires(Integer(I) && BinaryOperation(0Op))
Domain(0Op) power_accumulate_positive_O(Domain(0Op) r,

Domain(0Op) a, I n,

Op op)
{
// Precondition: associative(op) An >0
while (true) {
if (n % I(2) !'= 1(0)) {
r = op(r, a);
if (n == I(1)) return r;
a = op(a, a);
=n / I(2);
}
}

This is useful when it is known that n > 0. While developing a compo-
nent, we often discover new interfaces.

Now we relax the precondition again:

template<typename I, typename Op>
requires(Integer(I) && BinaryOperation(Op))
Domain(0p) power_accumulate_5(Domain(0Op) r, Domain(Op) a, I n,

Op op)
{
// Precondition: associative(op) An > 0
if (n == I(0)) return r;
return power_accumulate_positive_O(r, a, n, op);
}
We can implement power from power_accumulate by using a simple iden-
tity:
a" =aa™!

The transformation is accumulation-variable elimination:

template<typename I, typename Op>
requires(Integer(I) && BinaryOperation(0Op))

Domain(0Op) power_2(Domain(Op) a, I n, Op op)

{
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// Precondition: associative(op) An >0
return power_accumulate_5(a, a, n - I(1), op);

This algorithm performs more operations than necessary. For example,
when n is 16, it performs seven operations where only four are needed.
When n is odd, this algorithm is fine. Therefore we can avoid the problem
by repeated squaring of a and halving the exponent until it becomes odd:

template<typename I, typename Op>
requires(Integer(I) && BinaryOperation(0Op))
Domain(0Op) power_3(Domain(Op) a, I n, Op op)

{
// Precondition: associative(op) An >0
while (n % I(2) == I(0)) {
a = op(a, a);
n=mn/I(2);
}
n=mn/I(2);
if (n == I(0)) return a;
return power_accumulate_positive_0(a, op(a, a), n, op);
}

Exercise 3.1 Convince yourself that the last three lines of code are correct.

3.4 Special-Case Procedures

In the final versions we used these operations:

n/ I(2)
n % I(2) == 1(0)
n % I(2) !'= 1(0)
n == I1(0)
n == I(1)

Both / and % are expensive. We can use shifts and masks on non-negative
values of both signed and unsigned integers.

It is frequently useful to identify commonly occuring expressions involv-
ing procedures and constants of a type by defining special-case procedures.
Often these special cases can be implemented more efficiently than the gen-
eral case and, therefore, belong to the computational basis of the type. For
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built-in types, there may exist machine instructions for the special cases.
For user-defined types, there are often even more significant opportunities
for optimizing special cases. For example, division of two arbitrary polyno-
mials is more difficult than division of a polynomial by x. Similarly, division
of two Gaussian integers (numbers of the form a + bi where a and b are
integers and i = y/—1) is more difficult than division of a Gaussian integer
by 1+1.
Any integer type must provide the following special-case procedures:

Integer(1) &
successor : I — 1
n—n+1
/\ predecessor : [ — I
n—n-—1
N twice: T — 1
n—n+n
A half_nonnegative : [ — 1
n+— |n/2|, where n >0
/\ binary_scale_down_nonnegative : [ x I — 1
(n, k) — [n/2%], where n,k > 0
/\ binary_scale_up_nonnegative : I x I — I
(n, k) — 2*n, where n,k > 0
/\ positive : I — bool
n—n>0
/A negative : I — bool
n—n<0
/\ zero: 1 — bool
n—n=>0
A one: I — bool
n—n=1
/\ even : 1 — bool
n— (nmod?2)=0
/\ odd : I — bool
n+— (nmod 2) #0

Exercise 3.2 Implement these procedures for C++ integral types.

Now we can give the final implementations of the power procedures by
using the special-case procedures:

template<typename I, typename Op>
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requires(Integer(I) && BinaryOperation(Op))
Domain(0p) power_accumulate_positive(Domain(Op) r,
Domain(0Op) a, I n,

Op op)
{
// Precondition: associative(op) /\ positive(n)
while (true) {
if (odd(n)) {
r = op(r, a);
if (one(n)) return r;
¥
= op(a, a);
= half_nonnegative(n);
}
}

template<typename I, typename Op>
requires(Integer(I) && BinaryOperation(0Op))

Domain(0Op) power_accumulate(Domain(Op) r, Domain(Op) a, I n,

Op op)
{
// Precondition: associative(op) /\ —negative(n)
if (zero(n)) return r;
return power_accumulate_positive(r, a, n, op);
}

template<typename I, typename Op>
requires(Integer(I) && BinaryOperation(Op))
Domain(0p) power (Domain(Op) a, I n, Op op)
{
// Precondition: associative(op) /\ positive(n)
while (even(n)) {
a = op(a, a);
n = half_nonnegative(n);
}
n = half_nonnegative(n);
if (zero(n)) return a;

return power_accumulate_positive(a, op(a, a), n, op);
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Since we know that a™™ = a™a™, a’

must evaluate to the identity
element for the operation op. We can extend power to zero exponents by

passing the identity element as another parameter:®

template<typename I, typename Op>

requires(Integer(I) && BinaryOperation(Op))
Domain(0Op) power(Domain(Op) a, I n, Op op, Domain(Op) id)
{

// Precondition: associative(op) /\ —negative(n)

if (zero(n)) return id;

return power(a, n, op);

Project 3.1 Floating-point multiplication and addition are not associative,
so may give different results when they are used as the operation for power
and power_left_associated; establish whether power or power_left_associated
gives a more accurate result for raising a floating-point number to an integral
power.

3.5 Parameterizing Algorithms

In power we use two different techniques for providing operations for the
abstract algorithm.

1. The associative operation is passed as a parameter. This allows power
to be used with different operations on the same type, such as multi-
plication modulo n.

2. The operations on the exponent are provided as part of the compu-
tational basis for the exponent type. We do not choose, for exam-
ple, to pass half_nonnegative as a parameter to power, because we do
not know of a case in which there are competing implementations of
half _nonnegative on the same type.

In general, we pass an operation as a parameter when an algorithm could
be used with different operations on the same type. When a procedure is
defined with an operation as a parameter, a suitable default should be spec-
ified whenever possible. For example, the natural default for the operation
passed to power is multiplication.

6. Another technique involves defining a function identity_element such that
identity_element(op) returns the identity element for op.
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Using an operator symbol or a procedure name with the same semantics
on different types is called overloading, and we say that the operator symbol
or procedure name is overloaded on the type. For example, + is used on
natural numbers, integers, rationals, polynomials, and matrices. In mathe-
matics + is always used for an associative and commutative operation, so
using + for string concatenation would be inconsistent. Similarly, when both
+ and X are present, x must distribute over +. In power, half_nonnegative
is overloaded on the exponent type.

When we instantiate an abstract procedure, such as collision_point or
power, we create overloaded procedures. When actual type parameters sat-
isfy the requirements, the instances of the abstract procedure have the same
semantics.

3.6 Linear Recurrences

A linear recurrence function of order X is a function f such that

k—1
(Yo, .-, Y1) = Z diYi
i=0

where coefficients ag, ax—1 # 0. A sequence {xq, X1, - - - } is a linear recurrence
sequence of order k if there is a linear recurrence function of order k—say,
f—and

(= K)xn =flxn-1,..-,Xnx)

Note that indices of x decrease. Given k initial values xq,...,Xx—1 and a
linear recurrence function of order k, we can generate a linear recurrence
sequence via a straightforward iterative algorithm. This algorithm requires
n—k+1 applications of the function to compute x,,, for n > k. As we will see,
we can compute X, in O(logyn) steps, using power.” If f(yo,...,yx_1) =
Zf:_ol aiy; is a linear recurrence function of order k, we can view f as
performing vector inner product:®

Yo
|:a0 N Ax_1 .
Yr—1

If we extend the vector of coefficients to the companion matriz with 1s
on its subdiagonal, we can simultaneously compute the new value x,, and

7. The first O(logn) algorithm for linear recurrences is due to [ ].
8. For a review of linear algebra, see [ ]. They discuss linear recur-

rences starting on page 214.
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shift the old values xn_1,...,Xn_k+1 to the correct positions for the next
iteration:

Qp a a2 -+ (4g—2 0ax-—1 Xn—1 Xn

1 0 0 0 0 Xn—2 Xn—1

0 1 0 0 0 Xn—3| = Xn—2

0 0 0 ce 1 0 Xn—k Xn—k+1

By the associativity of matrix multiplication, it follows that we can ob-
tain x,, by multiplying the vector of the k initial values by the companion
matrix raised to the power n —k + 1:

n—k+1
Xn Qp ap az -+ Ok—2 QAk-1 Xk—1
Xn—1 1 0 0 s 0 0 Xk—2
Xn—2 = 0 1 0 ce 0 0 Xx—3
Xn—k+1 0 0 0 s 1 0 X0

Using power allows us to find x;,, with at most 2logs(n —k + 1) matrix mul-
tiplication operations. A straightforward matrix multiplication algorithm
requires k? multiplications and k3 — k? additions of coefficients. Therefore
the computation of x,, requires no more than 2k3log,(n — k + 1) multipli-
cations and 2(k? — k?)log,(n — k + 1) additions of the coefficients. Recall
that k is the order of the linear recurrence and is a constant.’

We never defined the domain of the elements of a linear recurrence se-
quence. It could be integers, rationals, reals, or complex numbers: The only
requirements are the existence of associative and commutative addition, as-
sociative multiplication, and distributivity of multiplication over addition.'?
The sequence f; generated by the linear recurrence function

fib(yo,y1) = yo +y1

of order 2 with initial values fy = 0 and f; = 1 is called the Fibonacci
sequence.'! It is straightforward to compute the nth Fibonacci number fy,
by using power with 2 x 2 matrix multiplication. We use the Fibonacci
sequence to illustrate how the k® multiplications can be reduced for this
particular case. Let

9. [ ] shows how the constant factor can be reduced via modular polynomial

multiplication.

10. It could be any type that models semiring, which we define in Chapter 5.

11. Leonardo Pisano, Liber Abaci, first edition, 1202. For an English translation, see
[ ]. The sequence appears on page 404.
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e

be the companion matrix for the linear recurrence generating the Fibonacci
sequence. We can show by induction that

" — fn+ 1 fn
fn fnfl

Indeed:

Fl_f2f1_11
Sl fo|l (10

FnJrl — FFn

o] [t e
L 0| | fn faig

fnp1r+fn fn+faoa

fn—}—l fn

— fn+2 fn+1
fn+1 fn
This allows us to express the matrix product of F™ and F™ as

Fan _ lfm+1 1:m ] |fn+1 fn

fm fm—l fn fn—l

_ fm-&—lf‘n+1 + fmfn fm+1fn + f‘mfn—l
frnf'rLJrl + fmflfn fmfn + fmflfnfl

We can represent the matrix F™* with a pair corresponding to its bottom row,
(fn,fn_1), since the top row could be computed as (f,_1 + fn, ), which
leads to the following code:

template<typename I>
requires(Integer(I))
pair<I, I> fibonacci_matrix_multiply(const pair<I, I>& x,

const pair<I, I>& y)

return pair<I, I>(
x.m0 * (y.ml + y.m0) + x.ml * y.mO,
x.m0 * y.m0 + x.ml * y.ml);
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This procedure performs only four multiplications instead of the eight
required for general 2 x 2 matrix multiplication. Since the first element of
the bottom row of F™ is f,,, the following procedure computes fy,:

template<typename I>

requires(Integer(I))
I fibonacci(I n)
{
// Precondition: n > 0
if (n == I(0)) return I(0);
return power (pair<I, I>(I(1), I(0)),
n,
fibonacci_matrix_multiply<I>).mO;
}

3.7 Accumulation Procedures

The previous chapter defined an action as a dual to a transformation. There
is a dual procedure for a binary operation when it is used in a statement
like

x = op(x, y);

Changing the state of an object by combining it with another object
via a binary operation defines an accumulation procedure on the object. An
accumulation procedure is definable in terms of a binary operation, and vice

versa:

void op_accumulate(T& x, const T& y) { x = op(x, y); }

// accumulation procedure from binary operation
and

T op(T x, const T& y) { op_accumulate(x, y); return x; }

// binary operation from accumulation procedure

As with actions, sometimes independent implementations are more ef-
ficient, in which case both operation and accumulation procedures need to
be provided.

Exercise 3.3 Rewrite all the algorithms in this chapter in terms of accu-

mulation procedures.
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Project 3.2 Create a library for the generation of linear recurrence se-
quences based on the results of [ ] and [1985].

3.8 Conclusions

Algorithms are abstract when they can be used with different models sat-
isfying the same requirements, such as associativity. Code optimization
depends on equational reasoning; unless types are known to be regular, few
optimizations can be performed. Special-case procedures can make code
more efficient and even more abstract. The combination of mathematics
and abstract algorithms leads to surprising algorithms, such as logarithmic
time generation of the nth element of a linear recurrence.






Chapter 4

Linear Orderings

Tn’s chapter describes properties of binary relations, such as transitivity
and symmetry. In particular, we introduce total and weak linear orderings.
We introduce the concept of stability of functions based on linear order-
ing: preserving order present in the arguments for equivalent elements. We
generalize min and max to order-selection functions, such as the median of
three elements, and introduce a technique for managing their implementa-
tion complexity through reduction to constrained subproblems.

4.1 Classification of Relations

A relation is a predicate taking two parameters of the same type:

Relation(R) £
HomogeneousPredicate(R)
A Arity(R) =2

A relation is transitive if, whenever it holds between a and b, and be-
tween b and c, it holds between a and c:

property(R : Relation)
transitive : R
r+— (Va,b,c € Domain(R)) (r(a,b) Ar(b,c) = r(a,c))

Examples of transitive relations are equality, equality of the first member
of a pair, reachability in an orbit, and divisibility.

47
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A relation is strict if it never holds between an element and itself; a
relation is reflexive if it always holds between an element and itself:

property(R : Relation)
strict : R
T~ (Va € Domain(R)) —r(a, a)

property(R : Relation)
reflexive : R
T~ (Va € Domain(R)) r(a, a)

All the previous examples of transitive relations are reflexive; proper
factor is strict.

Exercise 4.1 Give an example of a relation that is neither strict nor reflex-
ive.
A relation is symmetric if, whenever it holds in one direction, it holds in

the other; a relation is asymmetric if it never holds in both directions:

property(R : Relation)
symmetric : R
r+— (Va,b € Domain(R)) (r(a,b) = r(b, a))

property(R : Relation)
asymmetric : R
r— (Va,b € Domain(R)) (r(a,b) = —r(b, a))

An example of a symmetric transitive relation is “sibling”; an example
of an asymmetric transitive relation is “ancestor.”
Exercise 4.2 Give an example of a symmetric relation that is not transitive.
Exercise 4.3 Give an example of a symmetric relation that is not reflexive.

Given a relation r(a,b), there are derived relations with the same do-
main:
complement,.(a,b) < —r(a,b)
converse,(a,b) < (b, a)
complement_of _converse,(a,b) < —r(b, a)
Given a symmetric relation, the only interesting derivable relation is the

complement, because the converse is equivalent to the original relation.

A relation is an equivalence if it is transitive, reflexive, and symmetric:
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property(R : Relation)
equivalence : R
T > transitive(r) A reflexive(r) /\ symmetric(r)

Examples of equivalence relations are equality, geometric congruence,
and integer congruence modulo n.

Lemma 4.1 If r is an equivalence relation, a = b = r(a,b).

An equivalence relation partitions its domain into a set of equivalence
classes: subsets containing all elements equivalent to a given element. We
can often implement an equivalence relation by defining a key function, a
function that returns a unique value for all the elements in each equiva-
lence class. Applying equality to the results of the key function determines

equivalence:

property(F : UnaryFunction, R : Relation)
requires(Domain(F) = Domain(R))

key_function : F x R
(f,r) — (Va,b € Domain(F)) (r(a,b) < f(a) = f(b))

Lemma 4.2 key_function(f, r) = equivalence(r)

4.2 Total and Weak Orderings

A relation is a total ordering if it is transitive and obeys the trichotomy law,
whereby for every pair of elements, exactly one of the following holds: the
relation, its converse, or equality:

property(R : Relation)
total_ordering : R
T — transitive(r) A\
(Va,b € Domain(R)) exactly one of the following holds:
r(a,b),r(b,a), ora=">b

A relation is a weak ordering if it is transitive and there is an equiva-
lence relation on the same domain such that the original relation obeys the
weak-trichotomy law, whereby for every pair of elements, exactly one of the
following holds: the relation, its converse, or the equivalence:

property(R : Relation, E : Relation) requires(Domain(R) = Domain(E))
weak_ordering : R
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T > transitive(r) /\ (Je € E) equivalence(e) A
(Va,b € Domain(R)) exactly one of the following holds:
v(a,b), (b, a), or e(a,b)

Given a relation r, the relation —r(a, b)A—r(b, a) is called the symmetric
complement of r.

Lemma 4.3 The symmetric complement of a weak ordering is an equiva-

lence relation.

Examples of a weak ordering are pairs ordered by their first members
and employees ordered by salary.

Lemma 4.4 A total ordering is a weak ordering.
Lemma 4.5 A weak ordering is asymmetric.
Lemma 4.6 A weak ordering is strict.

A key function f on a set T, together with a total ordering r on the
codomain of f, define a weak ordering ¥(x,y) < r(f(x), f(y)).

We refer to total and weak orderings as linear orderings because of their
respective trichotomy laws.

4.3 Order Selection

Given a weak ordering r and two objects a and b from r’s domain, it makes
sense to ask which is the minimum. It is obvious how to define the minimum
when 1 or its converse holds between a and b but is not so when they are
equivalent. A similar problem arises if we ask which is the maximum.

A property for dealing with this problem is known as stability. Infor-
mally, an algorithm is stable if it respects the original order of equivalent
objects. So if we think of minimum and maximum as selecting, respectively,
the smallest and second smallest from a list of two arguments, stability re-
quires that when called with equivalent elements, minimum should return
the first and maximum the second.!

We can generalize minimum and maximum to (j, k)-order selection, where
k > 0 indicates the number of arguments, and 0 < j < k indicates that the
jth smallest is to be selected. To formalize our notion of stability, assume
that each of the k arguments is associated with a unique natural number
called its stability index. Given the original weak ordering r, we define the

1.In later chapters we extend the notion of stability to other categories of algorithms.
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strengthened relation T on (object, stability index) pairs:
TA'((aa ia); (b71b)) < T‘(a,b) Vv ("T(bv (1) /\ia < lb)

If we implement an order-selection algorithm in terms of ¥, there are no
ambigous cases caused by equivalent arguments. The natural default for
the stability index of an argument is its ordinal position in the argument
list.

While the strengthened relation t gives us a powerful tool for reasoning
about stability, it is straightforward to define simple order-selection proce-
dures without making the stability indices explicit. This implementation of
minimum returns a when a and b are equivalent, satisfying our definition
of stability:?

template<typename R>
requires(Relation(R))
const Domain(R)& select_0_2(const Domain(R)& a,
const Domain(R)& b, R r)

{
// Precondition: weak_ordering(r)
if (r(b, a)) return b;
return a;

}

Similarly, this implementation of maximum returns b when a and b are
equivalent, again satisfying our definition of stability:?

template<typename R>
requires(Relation(R))
const Domain(R)& select_1_2(const Domain(R)& a,
const Domain(R)& b, R r)

{
// Precondition: weak_ordering(r)
if (r(b, a)) return a;
return b;
}
For the remainder of this chapter, the precondition weak_ordering(r) is
implied.

While it is useful to have other order-selection procedures for k argu-
ments, the difficulty of writing such an order-selection procedure grows

2. We explain our naming convention later in this section.
3.STL incorrectly requires that max(a, b) returns a when a and b are equivalent.
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quickly with k, and there are many different procedures we might have
a need for. A technique we call reduction to constrained subproblems ad-
dresses both issues. We develop a family of procedures that assume a certain
amount of information about the relative ordering of their arguments.

Naming these procedures systematically is essential. Each name begins
with select_j_k, where 0 < j < k, to indicate selection of the jth element
from k arguments according to the given ordering. We append a sequence
of letters to indicate a precondition on the ordering of parameters, expressed
as increasing chains. For example, a suffix of _ab means that the first two
parameters are in order, and _abd means that the first, second, and fourth
parameters are in order. More than one such suffix appears when there are
preconditions on different chains of parameters.

For example, it is straightforward to implement minimum and maximum

for three elements:

template<typename R>
requires(Relation(R))
const Domain(R)& select_0_3(const Domain(R)& a,
const Domain(R)& b,

const Domain(R)& c, R r)

return select_0_2(select_0_2(a, b, r), c, 1);

template<typename R>
requires(Relation(R))
const Domain(R)& select_2_3(const Domain(R)& a,
const Domain(R)& b,
const Domain(R)& c, R r)

return select_1_2(select_1_2(a, b, r), c, 1);

It is easy to find the median of three elements if we know that the first

two elements are in increasing order:

template<typename R>
requires(Relation(R))
const Domain(R)& select_1_3_ab(const Domain(R)& a,
const Domain(R)& b,

const Domain(R)& c, R r)
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if ('r(c, b)) return b; // a, b, c are sorted
return select_1_2(a, c, r); //b is not the median

Establishing the precondition for select_1_3_ab requires only one com-
parison. Because the parameters are passed by constant reference, no data
movement takes place:

template<typename R>
requires(Relation(R))
const Domain(R)& select_1_3(const Domain(R)& a,
const Domain(R)& b,

const Domain(R)& c, R r)

if (r(b, a)) return select_1_3_ab(b, a, c, 1);
return select_1_3_ab(a, b, c, r);

In the worst case, select_1_3 does three comparisons. The function does
two comparisons only when ¢ is the maximum of a, b, ¢, and since it happens
in one-third of the cases, the average number of comparisons is 2%7 assuming
a uniform distribution of inputs.

Finding the second smallest of n elements requires at least n+[logy n]—2
comparisons.? In particular, finding the second of four requires four com-
parisons.

It is easy to select the second of four if we know that the first pair of
arguments and the second pair of arguments are each in increasing order:

template<typename R>
requires(Relation(R))
const Domain(R)& select_1_4_ab_cd(const Domain(R)& a,
const Domain(R)& b,
const Domain(R)& c,
const Domain(R)& d, R r)

if (r(c, a)) return select_0_2(a, d, r);
return select_0_2(b, ¢, 1)}

}

4. This result was conjectured by Jozef Schreier and proved by Sergei Kislitsyn [
, Theorem S, page 209].
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The precondition for select_1_4_ab_cd can be established with one com-
parison if we already know that the first pair of arguments are in increasing
order:

template<typename R>
requires(Relation(R))
const Domain(R)& select_1_4_ab(const Domain(R)& a,
const Domain(R)& b,
const Domain(R)& c,
const Domain(R)& d, R r)

{
if (r(d, c)) return select_1_4_ab_cd(a, b, d, c, 1);
return select_1_4_ab_cd(a, b, c, d, r);
}
The precondition for select_1_4_ab can be established with one compari-
son:

template<typename R>
requires(Relation(R))
const Domain(R)& select_1_4(const Domain(R)& a,
const Domain(R)& b,
const Domain(R)& c,
const Domain(R)& d, R r)

if (r(b, a)) return select_1_4_ab(b, a, c, d, r);
return select_1_4_ab(a, b, c, d, r);

Exercise 4.4 Implement select_2_4.

Maintaining stability of order-selection networks up through order 4 has
not been too difficult. But with order 5, situations arise in which the pro-
cedure corresponding to a constrained subproblem is called with arguments
out of order from the original caller, which violates stability. A systematic
way to deal with such situations is to pass the stability indices along with
the actual parameters and to use the strengthened relation ¥. We avoid
extra runtime cost by using integer template parameters.

We name the stability indices ia, ib, ..., corresponding to the param-
eters a, b, and so on. The strengthened relation ¥ is obtained by using
the function object template compare_strict_or_reflexive, which takes a bool
template parameter that, if true, means that the stability indices of its ar-

guments are in increasing order:
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template<bool strict, typename R>
requires(Relation(R))

struct compare_strict_or_reflexive;

When we construct an instance of compare_strict_or_reflexive, we supply
the appropriate Boolean template argument:

template<int ia, int ib, typename R>
requires(Relation(R))
const Domain(R)& select_0_2(const Domain(R)& a,
const Domain(R)& b, R r)

{
compare_strict_or_reflexive<(ia < ib), R> cmp;
if (cmp(b, a, r)) return b;
return a;

}

We specialize compare_strict_or_reflexive for the two cases: (1) stability
indices in increasing order, in which case we use the original strict relation
1; and (2) decreasing order, in which case we use the corresponding reflexive
version of 1:

template<typename R>
requires(Relation(R))
struct compare_strict_or_reflexive<true, R> // strict
{
bool operator() (const Domain(R)& a,
const Domain(R)& b, R 1)

return r(a, b);

template<typename R>
requires(Relation(R))
struct compare_strict_or_reflexive<false, R> // reflexive
{
bool operator() (const Domain(R)& a,
const Domain(R)& b, R r)
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return !'r(b, a); // complement_of_converse,(a,b)

};

When an order-selection procedure with stability indices calls another
such procedure, the stability indices corresponding to the parameters, in the
same order as they appear in the call, are passed:

template<int ia, int ib, int ic, int id, typename R>
requires(Relation(R))
const Domain(R)& select_1_4_ab_cd(const Domain(R)& a,
const Domain(R)& b,
const Domain(R)& c,
const Domain(R)& d, R 1)

{
compare_strict_or_reflexive<(ia < ic), R> cmp;
if (cmp(c, a, r)) return
select_0_2<ia,id>(a, d, r);
return
select_0_2<ib,ic>(b, c, r);
}

template<int ia, int ib, int ic, int id, typename R>
requires(Relation(R))
const Domain(R)& select_1_4_ab(const Domain(R)& a,
const Domain(R)& b,
const Domain(R)& c,
const Domain(R)& d, R r)

{
compare_strict_or_reflexive<(ic < id), R> cmp;
if (cmp(d, ¢, r)) return
select_1_4_ab_cd<ia,ib,id,ic>(a, b, d, c, r);
return
select_1_4_ab_cd<ia,ib,ic,id>(a, b, c, d, r);
}

template<int ia, int ib, int ic, int id, typename R>
requires(Relation(R))

const Domain(R)& select_1_4(const Domain(R)& a,
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const Domain(R)& b,
const Domain(R)& c,
const Domain(R)& d, R r)

{
compare_strict_or_reflexive<(ia < ib), R> cmp;
if (cmp(b, a, r)) return
select_1_4_ab<ib,ia,ic,id>(b, a, c, d, r);
return
select_1_4_ab<ia,ib,ic,id>(a, b, c, d, 1);
}

Now we are ready to implement order 5 selections:

template<int ia, int ib, int ic, int id, int ie, typename R>
requires(Relation(R))
const Domain(R)& select_2_5_ab_cd(const Domain(R)&
const Domain(R)&

a,
b,
const Domain(R)& c,
const Domain(R)& d,

e,

const Domain(R)& R 1)
{
compare_strict_or_reflexive<(ia < ic), R> cmp;
if (cmp(c, a, r)) return
select_1_4_ab<ia,ib,id,ie>(a, b, d, e, 1);
return
select_1_4_ab<ic,id,ib,ie>(c, d, b, e, 1);
}

template<int ia, int ib, int ic, int id, int ie, typename R>
requires(Relation(R))
const Domain(R)& select_2_5_ab(const Domain(R)& a,
const Domain(R)& b,
const Domain(R)& c,
const Domain(R)& d,
const Domain(R)& e, R r)

compare_strict_or_reflexive<(ic < id), R> cmp;
if (cmp(d, c, r)) return

select_2_5_ab_cd<ia,ib,id,ic,ie>(

57
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a, b, d, c, e, 1);
return
select_2_5_ab_cd<ia,ib,ic,id,ie>(

a, b, ¢, d, e, r);

template<int ia, int ib, int ic, int id, int ie, typename R>
requires(Relation(R))

const Domain(R)& select_2_5(const Domain(R)& a,
const Domain(R)& b,
const Domain(R)& c,
const Domain(R)& d,
const Domain(R)& e, R r)
{
compare_strict_or_reflexive<(ia < ib), R> cmp;
if (cmp(b, a, r)) return
select_2_5_ab<ib,ia,ic,id,ie>(b, a, c, d, e, 1);
return
select_2_5_ab<ia,ib,ic,id,ie>(a, b, c, d, e, r);
}

Lemma 4.7 select_2_5 performs six comparisons.

Exercise 4.5 Find an algorithm for median of 5 that does slightly fewer

comparisons on average.

We can wrap an order-selection procedure with an outer procedure that
supplies, as the stability indices, any strictly increasing series of integer
constants; by convention, we use successive integers starting with 0:

template<typename R>
requires(Relation(R))
const Domain(R)& median_5(const Domain(R)&
const Domain(R)&

a
b
const Domain(R)& c,
const Domain(R)& d
e

const Domain(R)& e, R r)

return select_2_5<0,1,2,3,4>(a, b, ¢c, d, e, 1);
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Exercise 4.6 Prove the stability of every order-selection procedure in this
section.

Exercise 4.7 Verify the correctness and stability of every order-selection
procedure in this section by exhaustive testing.

Project 4.1 Design a set of necessary and sufficient conditions preserving
stability under composition of order-selection procedures.

Project 4.2 Create a library of minimum-comparison procedures for stable
sorting and merging.® Minimize not only the number of comparisons but
also the number of data movements.

4.4 Natural Total Ordering

There is a unique equality on a type because equality of values of the type
means that those values represent the same entity. Often there is no unique
natural total ordering on a type. For a concrete species, there are often many
total and weak orderings, without any of them playing a special role. For
an abstract species, there may be one special total ordering that respects
its fundamental operations. Such an ordering is called the natural total
ordering and is denoted by the symbol <, as follows:

TotallyOrdered(T) £
Regular(T)
A <:TxT—= bool
/\ total_ordering(<)

For example, the natural total ordering on integers respects fundamental
operations:

a < successor(a)

a < b = successor(a) < successor(b)
a<b=a+c<b+c
a<bANA0<c=ca<chb

Sometimes, a type does not have a natural total ordering. For example,
complex numbers and employee records do not have natural total orderings.
We require regular types to provide a default total ordering (sometimes ab-
breviated to default ordering) to enable logarithmic searching. An example

5. See [ , Section 5.3: Optimum Sorting].
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of default total ordering where no natural total ordering exists is lexico-
graphical ordering for complex numbers. When the natural total ordering
exists, it coincides with the default ordering. We use the following notation:

‘ Specifications ‘ C++
Default ordering for T ‘ lesst ‘ less<T>

4.5 Clusters of Derived Procedures

Some procedures naturally come in clusters. If some procedures in a cluster
are defined, the definitions of the others naturally follow. The complement
of equality, inequality, is defined whenever equality is defined; the operators
= and # must be defined consistently. For every totally ordered type, all
four operators <, >, <, and > must be defined together in such a way that
the following hold:

a>b&b<a
a<bs—-(b<a)
a>2bs —(a<b)

4.6 Extending Order-Selection Procedures

The order-selection procedures in this chapter do not return an object that
can be mutated, because they work with constant references. It is useful
and straightforward to have versions that return a mutable object, so that
they could be used on the left side of an assignment or as the mutable
argument to an action or accumulation procedure. An overloaded mutable
version of an order-selection procedure is implemented by removing from
the nonmutable version the const from each parameter type and the result
type. For example, our version of select_0_2 is supplemented with

template<typename R>

requires(Relation(R))
Domain(R)& select_0_2(Domain(R)& a, Domain(R)& b, R r)
{

if (r(b, a)) return b;

return a;

In addition, a library should provide versions for totally ordered types
(with <), since it is a common case. This means that there are four versions
of each procedure.
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The trichotomy and weak-trichotomy laws satisfied by total and weak
ordering suggest that instead of a two-valued relation, we could use a three-
valued comparison procedure, since, in some situations, this would avoid an
additional procedure call.

Exercise 4.8 Rewrite the algorithms in this chapter using three-valued

comparison.

4.7 Conclusions

The axioms of total and weak ordering provide the interface to connect
specific orderings with general-purpose algorithms. Systematic solutions to
small problems lead to easy decomposition of large problems. There are
clusters of procedures with interrelated semantics.






Chapter 5

Ordered Algebraic

Structures

Tu’s chapter presents a hierarchy of concepts from abstract algebra,
starting with semigroups and ending with rings and modules. We then com-
bine algebraic concepts with the notion of total ordering. When ordered
algebraic structures are Archimedean, we can define an efficient algorithm
for finding quotient and remainder. Quotient and remainder in turn lead to
a generalized version of Fuclid’s algorithm for the greatest common divisor.
We briefly treat concept-related logical notions, such as consistency and in-
dependence. We conclude with a discussion of computer integer arithmetic.

5.1 Basic Algebraic Structures

An element is called an identity element of a binary operation if, when com-
bined with any other element as the first or second argument, the operation

returns the other element:

property(T : Regular, Op : BinaryOperation)
requires(T = Domain(Op))
identity_element : T x Op
(e,op) = (Va € T)op(a,e) =opl(e,a) =a

Lemma 5.1 An identity element is unique:

identity_element(e, op) A\ identity_element(e’, op) = e = ¢’

63
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The empty string is the identity element of string concatenation. The
matrix (§ ) is the multiplicative identity of 2 x 2 matrices, while (§§) is
their additive identity.

A transformation is called an inverse operation of a binary operation
with respect to a given element (usually the identity element of the binary
operation) if it satisfies the following:

property(F : Transformation, T : Regular, Op : BinaryOperation)
requires(Domain(F) = T = Domain(Op))

inverse_operation : F x T x Op
(inv,e,op) — (Va € T)op(a,inv(a)) = op(inv(a),a) =e

Lemma 5.2 f(n) = n? is the multiplicative inverse for the multiplication

of non-zero remainders modulo 5.

A binary operation is commutative if its result is the same when its

arguments are interchanged:

property(Op : BinaryOperation)
commutative : Op
op — (Va,b € Domain(Op)) op(a,b) = op(b, a)

Composition of transformations is associative but not commutative.

A set with an associative operation is called a semigroup. Since, as we
remarked in Chapter 3, + is always used to denote an associative, commu-
tative operation, a type with + is called an additive semigroup:

AdditiveSemigroup(T) £
Regular(T)
AN+:TxT—=T
/\ associative(+)
/A commutative(+)

Multiplication is sometimes not commutative. Consider, for example,

matrix multiplication.

MultiplicativeSemigroup(T) £
Regular(T)
N TxT—T
/\ associative(-)
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We use the following notation:

‘ Specifications ‘ C++
Multiplication ‘ . ‘ *

A semigroup with an identity element is called a monoid. The additive
identity element is denoted by 0, which leads to the definition of an additive
monoid:

AdditiveMonoid(T) =
AdditiveSemigroup(T)
AN0eT
A identity_element(0, +)

We use the following notation:

‘ Specifications ‘ C++
Additive identity | 0 | T(O)

Non-negative reals are an additive monoid, as are matrices with natural
numbers as their coefficients.

The multiplicative identity element is denoted by 1, which leads to the
definition of a multiplicative monoid:

MultiplicativeMonoid(T) &
MultiplicativeSemigroup(T)
AN1eT
A identity_element(1, )

We use the following notation:

‘ Specifications ‘ C++
Multiplicative identity ‘ 1 ‘ T(1)

Matrices with integer coefficients are a multiplicative monoid.

A monoid with an inverse operation is called a group. If an additive
monoid has an inverse, it is denoted by unary —, and there is a derived
operation called subtraction, denoted by binary —. That leads to the
definition of an additive group:

AdditiveGroup(T) &
AdditiveMonoid(T)
AN —:T=>T
/\ inverse_operation(unary —, 0, +)
AN —:TxT—>T
(a,b) — a+ (—b)
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Matrices with integer coefficients are an additive group.

Lemma 5.3 In an additive group, —0 = 0.

Just as there is a concept of additive group, there is a corresponding
concept of multiplicative group. In this concept the inverse is called multi-
plicative inverse, and there is a derived operation called division, denoted

by binary /:

MultiplicativeGroup(T) £
MultiplicativeMonoid(T)
/\ multiplicative_inverse : T — T
/\ inverse_operation(multiplicative_inverse, 1, -)
N/ TxT—>T
(a,b) — a - multiplicative_inverse(b)

multiplicative_inverse(x) is written as x .

The set {cos 0 + isin 0} of complex numbers on the unit circle is a com-
mutative multiplicative group. A unimodular group GLy(Z) (nxn matrices
with integer coefficients with determinant equal to £1) is a noncommutative
multiplicative group.

Two concepts can be combined on the same type with the help of axioms
connecting their operations. When both + and - are present on a type, they

are interrelated with axioms defining a semiring:

Semiring(T) £

AdditiveMonoid(T)
/N MultiplicativeMonoid(T)
A 0#£1
A MaeT)0-a=a-0=0
A (Va,b,ceT)
a-(b+c) = a-b+a-c
(b+c)-a = b-a+c-a

The axiom about multiplication by 0 is called the annihilation property.
The final axiom connecting + and - is called distributivity.
Matrices with non-negative integer coefficients constitute a semiring.

CommutativeSemiring(T) £

Semiring(T)
/\ commutative(+)

Non-negative integers constitute a commutative semiring.
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Ring(T) &
AdditiveGroup(T)
A Semiring(T)

Matrices with integer coefficients constitute a ring.

L

CommutativeRing(T)
AdditiveGroup(T)
AN CommutativeSemiring(T)

Integers constitute a commutative ring; polynomials with integer coeffi-
cients constitute a commutative ring.

A relational concept is a concept defined on two types. Semimodule is
a relational concept that connects an additive monoid and a commutative

ring:

Semimodule(T,S) £
AdditiveMonoid(T)
A CommutativeSemiring(S)
AN :SXT—=>T
A Vo, p € S)(Va,b eT)
x-(B-a) = (x-B)-a

(x+B)-a = a-a+Pf-a
x-(a+b) = a-a+a-db
l-a = a

If Semimodule(T,S), we say that T is a semimodule over S. We borrow
terminology from vector spaces and call elements of T wectors and elements
of S scalars. For example, polynomials with non-negative integer coefficients

constitute a semimodule over non-negative integers.

Theorem 5.1 AdditiveMonoid(T) = Semimodule(T,N), where scalar mul-
tiplication is defined asn-x =x+--- +x.
—_——

n times
Proof. Tt follows trivially from the definition of scalar multiplication to-
gether with associativity and commutativity of the monoid operation. For
example,
n-a+n-b=(a+---+a)+(b+---+b)
=(a+b)+---+(a+Db)
=n-(a+Db)
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Using power from Chapter 3 allows us to implement multiplication by
an integer in log, n steps.

Strengthening the requirements by replacing the additive monoid with
an additive group and replacing the semiring with a ring transforms a semi-

module into a module:

Module(T,S) &
Semimodule(T,S)
N AdditiveGroup(T)
A Ring(S)

Lemma 5.4 Every additive group is a module over integers with an appro-
priately defined scalar multiplication.

Computer types are often partial models of concepts. A model is called
partial when the operations satisfy the axioms where they are defined but are
not everywhere defined. For example, the result of concatenation of strings
may not be representable, because of memory limitations, but concatenation
is associative whenever it is defined.

5.2 Ordered Algebraic Structures

When a total ordering is defined on the elements of a structure in such a
way that the ordering is consistent with the structure’s algebraic properties,
it is the natural total ordering for the structure:

OrderedAdditiveSemigroup(T) £
AdditiveSemigroup(T)
A TotallyOrdered(T)
A Va,b,ceT)a<b=a+c<b+c

OrderedAdditiveMonoid(T) £
OrderedAdditiveSemigroup(T)
N AdditiveMonoid(T)

OrderedAdditiveGroup(T) =
OrderedAdditiveMonoid(T)
N AdditiveGroup(T)
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Lemma 5.5 In an ordered additive semigroup, a < bAc<d=a+c <
b+d.

Lemma 5.6 In an ordered additive monoid viewed as a semimodule over
natural numbers, a >0An > 0= na > 0.

Lemma 5.7 In an ordered additive group, a < b = —b < —a.

Total ordering and negation allow us to define absolute value:

template<typename T>
requires (OrderedAdditiveGroup(T))
T abs(const T& a)

{
if (a < T(0)) return -a;

else return a;

The following lemma captures an important property of abs.
Lemma 5.8 In an ordered additive group, a < 0 = 0 < —a.

We use the notation |a| for the absolute value of a. Absolute value
satisfies the following properties.

Lemma 5.9

la—bl=b—ad]
la + bl < [al + bl
la —bl > [al — bl
laj]=0=a=0
a#0=la/>0

5.3 Remainder

We saw that repeated addition in an additive monoid induces multiplication
by a non-negative integer. In an additive group, this algorithm can be
inverted, obtaining division by repeated subtraction on elements of the form
a = nb, where b divides a. To extend this to division with remainder for
an arbitrary pair of elements, we need ordering. The ordering allows the
algorithm to terminate when it is no longer possible to subtract. As we shall
see, it also enables an algorithm to take a logarithmic number of steps. The
subtraction operation does not need to be defined everywhere; it is sufficient
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to have a partial subtraction called cancellation, where a—Db is only defined
when b does not exceed a:

CancellableMonoid(T) £
OrderedAdditiveMonoid(T)
N—TxT-=>T
A Va,beT)b<a=a—bisdefined \(a—b)+b=a

We write the axiom as (a —b) + b = a instead of (a +b) —b = a to
avoid overflow in partial models of Cancellable Monoid:

template<typename T>
requires(CancellableMonoid(T))

T slow_remainder(T a, T b)

{
// Precondition: a > 0/Ab >0
while (b <= a) a = a - b;
return a;

}

The concept CancellableMonoid is not strong enough to prove termina-
tion of slow_remainder. For example, slow_remainder does not always termi-
nate for polynomials with integer coefficients, ordered lexicographically.

Exercise 5.1 Give an example of two polynomials with integer coefficients
for which the algorithm does not terminate.

To ensure that the algorithm terminates, we need another property,
called the Aziom of Archimedes:'

ArchimedeanMonoid(T) &
CancellableMonoid(T)
A (Va,beT)(a>=0Ab>0)= slow_remainder(a,b) terminates
A QuotientType : ArchimedeanMonoid — Integer

Observe that termination of an algorithm is a legitimate axiom; in this
case it is equivalent to

(In € QuotientType(T))a—n-b < b

1. “...the excess by which the greater of (two) unequal areas exceeds the less can, by
being added to itself, be made to exceed any given finite area.” See [ , page
234].
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While the Axiom of Archimedes is usually given as “there exists an inte-
ger n such that a < n-b,” our version works with partial Archimedean
monoids where n - b might overflow. The type function QuotientType re-
turns a type large enough to represent the number of iterations performed
by slow_remainder.

Lemma 5.10 The following are Archimedean monoids: integers, rational
numbers, binary fractions {5}, ternary fractions {3}, and real numbers.

We can trivially adapt the code of slow_remainder to return the quotient:

template<typename T>

requires (ArchimedeanMonoid(T))
QuotientType(T) slow_quotient(T a, T b)
{

// Precondition: a 2 0/\b >0

QuotientType(T) n(0);

while (b <= a) {

a=a-b;

n = successor(n);

}

return n;

Repeated doubling leads to the logarithmic-complexity power algorithm.
A related algorithm is possible for remainder.? Let us derive an expression
for the remainder u from dividing a by b in terms of the remainder v from
dividing a by 2b:
a=n(2b)+v

Since the remainder v must be less than the divisor 2b, it follows that

v ifv<b
u =
v—>b ifv>b

That leads to the following recursive procedure:

template<typename T>

requires (ArchimedeanMonoid(T))
T remainder_recursive(T a, T b)
{

// Precondition: a >b >0

2. The Egyptians used this algorithm to do division with remainder, as they used the
power algorithm to do multiplication. See [ , page 18].
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if (a - b >=b) {
a = remainder_recursive(a, b + b);
if (a < b) return a;

}

return a - b;

Testing a — b > b rather than a > b + b avoids overflow of b 4+ b.

template<typename T>
requires (ArchimedeanMonoid(T))
T remainder_nonnegative(T a, T b)

{

// Precondition: a > 0/A\b >0

if (a < b) return a;

return remainder_recursive(a, b);
}

Exercise 5.2 Analyze the complexity of remainder_nonnegative.

[ ] give a constant-space algorithm for remainder
on Archimedean monoids that performs about 31% more operations than
remainder_nonnegative, but when we can divide by 2 an algorithm exists that
does not increase the operation count.? This is likely to be possible in many
situations. For example, while the general k-section of an angle by ruler and
compass cannot be done, the bisection is trivial.

HalvableMonoid(T) £
ArchimedeanMonoid(T)
A half : T—T
A (Va,beT)(b>0ANa=b+b)=half(a)=b

Observe that half needs to be defined only for “even” elements.

template<typename T>
requires(HalvableMonoid(T))
T remainder_nonnegative_iterative(T a, T b)
{
// Precondition: a > 0/A\b >0

3. [ , page 13] attributes this algorithm to N. G. de Bruijn.
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if (a < b) return a;
T ¢ = largest_doubling(a, b);
a=a-c;
while (c !'=b) {
¢ = half(c);
if (c <= a) a=a - c;
}
return a;

}
where largest_doubling is defined by the following procedure:

template<typename T>
requires (ArchimedeanMonoid(T))
T largest_doubling(T a, T b)

{
// Precondition: a > b >0
while (b <= a - b) b =Db + b;
return b;
}
The correctness of remainder_nonnegative_iterative depends on the follow-
ing lemma.

Lemma 5.11 The result of doubling a positive element of a halvable monoid
k times may be halved k times.

We would only need remainder_nonnegative if we had an Archimedean
monoid that was not halvable. The examples we gave—line segments in
Euclidean geometry, rational numbers, binary and ternary fractions—are
all halvable.

Project 5.1 Are there useful models of Archimedean monoids that are not

halvable monoids?

5.4 Greatest Common Divisor

For a > 0 and b > 0 in an Archimedean monoid T, we define divisibility as
follows:
b divides a < (In € QuotientType(T)) a =nb

Lemma 5.12 In an Archimedean monoid T with positive x, a, b:

e b divides a < remainder_nonnegative(a,b) =0
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e bdividesa=b<a
e a > b Ax divides a/\x divides b = x divides (a — b)
e x divides a /A x divides b = x divides remainder_nonnegative(a, b)

The greatest common divisor of a and b, denoted by ged(a,b), is a
divisor of a and b that is divisible by any other common divisor of a and
b.?

Lemma 5.13 In an Archimedean monoid, the following hold for positive
X, a,b:

e gcd is commutative

e gcd is associative

x divides a A x divides b = x < ged(a, b)

gcd(a, b) is unique
e gcd(a,a) =a
e a>b=ged(a,b) =ged(a—b,b)

The previous lemmas immediately imply that if the following algorithm
terminates, it returns the gcd of its arguments:®

template<typename T>
requires (ArchimedeanMonoid(T))

T subtractive_gcd_nonzero(T a, T b)

{
// Precondition: a>0/Ab >0
while (true) {
if (b < a) a=a- b;
else if (a < b) b=>b - a;
else return a;
}
}

Lemma 5.14 It always terminates for integers and rationals.

4. While this definition works for Archimedean monoids, it does not depend on ordering
and can be extended to other structures with divisibility relations, such as rings.
5.1t is known as Euclid’s algorithm [ , Volume 3, pages 14-22].
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There are types for which it does not always terminate. In particular, it
does not always terminate for real numbers; specifically, it does not termi-
nate for input of v/2 and 1. The proof of this fact depends on the following
two lemmas:

Lemma 5.15 ged( =1

_a #)
ged( ab) ged(a,b)

Lemma 5.16 If the square of an integer n is even, n is even.

Theorem 5.2 subtractive_gcd_nonzero(y/2,1) does not terminate.

Proof. Suppose that subtractive _gcd_nonzero(1/2, 1) terminates, returning d.

Let m = T and n = =; by Lemma 5.15, m and n have no common factors

E
greater than 1. = i \f so m? = 2n2; m is even; for some integer u,
m=2u. 4u? = 2n ,so N2 =2u?; n is even. Both m and n are divisible by

2; a contradiction.’ O

A Fuclidean monoid is an Archimedean monoid where subtractive_gcd_

nonzero always terminates:

FEuclideanMonoid(T) £
ArchimedeanMonoid(T)
A (Va,b e T)(a > 0Ab > 0) = subtractive_gcd_nonzero(a, b) terminates

Lemma 5.17 Every Archimedean monoid with a smallest positive element
is Euclidean.

Lemma 5.18 The rational numbers are a Euclidean monoid.

It is straightforward to extend subtractive_gcd_nonzero to the case in
which one of its arguments is zero, since any b # 0 divides the zero of the

monoid:

template<typename T>
requires (EuclideanMonoid(T))
T subtractive_gcd(T a, T b)
{
// Precondition: a 20Ab>20A—(a=0Ab=0)
while (true) {
if (b == T(0)) return a;

6. The incommensurability of the side and the diagonal of a square was one of the first
mathematical proofs discovered by the Greeks. Aristotle refers to it in Prior Analytics
1. 23 as the canonical example of proof by contradiction (reductio ad absurdum).
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while (b <= a) a = a - b;
if (a == T(0)) return b;
while (a <= b) b =D - a;

Each of the inner while statements in subtractive_gcd is equivalent to a
call of slow_remainder. By using our logarithmic remainder algorithm, we
speed up the case when a and b are very different in magnitude while relying
only on primitive subtraction on type T:

template<typename T>
requires (EuclideanMonoid(T))
T fast_subtractive_gcd(T a, T b)

{
// Precondition: a 20Ab>20A—(a=0Ab=0)
while (true) {
if (b == T(0)) return a;
a = remainder_nonnegative(a, b);
if (a == T(0)) return b;
b = remainder_nonnegative(b, a);
}
}

The concept of Euclidean monoid gives us an abstract setting for the
original Euclid algorithm, which was based on repeated subtraction.

5.5 Generalizing gcd

We can use fast_subtractive_gcd with integers because they constitute a Eu-
clidean monoid. For integers, we could also use the same algorithm with
the built-in remainder instead of remainder_nonnegative. Furthermore, the
algorithm works for certain non-Archimedean domains, provided that they
possess a suitable remainder function. For example, the standard long-
division algorithm easily extends from decimal integers to polynomials over
reals.” Using such a remainder, we can compute the ged of two polynomials.

Abstract algebra introduces the notion of a Euclidean ring (also known
as a Euclidean domain) to accommodate such uses of the Euclid algorithm.®
However, the requirements of semiring suffice:

7.See [ , Chapter 5].
8. See [ , Chapter 3, Section 18].
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A

EuclideanSemiring(T) =
CommutativeSemiring(T)
A NormType : EuclideanSemiring — Integer
A w:T — NormType(T)
A (VaeT)w(a) >0
AN VaeT)w(a) =0 a=0
A Va,beT)b#0=w(a-b)>w(a)
/N remainder: T x T —T
A quotient : TXT —T
A (Va,b e T)b # 0= a = quotient(a, b) - b + remainder(a, b)
A (Va,b € T)b #£ 0 = w(remainder(a, b)) < w(b)

w is called the Fuclidean function.

Lemma 5.19 In a Euclidean semiring, a-b=0=a=0V b =0.

template<typename T>
requires(EuclideanSemiring(T))
T gcd(T a, T b)

{
// Precondition: =(a=0/A\b =0)
while (true) {
if (b == T(0)) return a;
a = remainder(a, b);
if (a == T(0)) return b;
b = remainder(b, a);
}
}

Observe that instead of using remainder_nonnegative, we use the remainder
function defined by the type. The fact that w decreases with every applica-
tion of remainder ensures termination.

Lemma 5.20 gcd terminates on a Euclidean semiring.

In a Euclidean semiring, quotient returns an element of the semiring.
This precludes its use in the original setting of Euclid: determining the
common measure of any two commensurable quantities. For example,

13 1
ng(§» Z) =1

We can unify the original setting and the modern setting with the concept
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Euclidean semimodule, which allows quotient to return a different type and
takes the termination of gcd as an axiom:

FuclideanSemimodule(T,S) £
Semimodule(T, S)
/\ remainder : T x T — T
/\ quotient: T x T — §
A (Va,b € T)b #£ 0 = a = quotient(a, b) - b + remainder(a, b)
A Va,beT)(a#A0VDb#0) = gcd(a,b) terminates

where gcd is defined as

template<typename T, typename S>
requires (EuclideanSemimodule(T, S))
T gcd(T a, T b)

{
// Precondition: =(a =0/A\b =0)
while (true) {
if (b == T(0)) return a;
a = remainder(a, b);
if (a == T(0)) return b;
b = remainder(b, a);
}
}

Since every commutative semiring is a semimodule over itself, this al-
gorithm can be used even when quotient returns the same type, as with

polynomials over reals.

5.6 Stein gcd

In 1961 Josef Stein discovered a new gcd algorithm for integers that is fre-
quently faster than Euclid’s algorithm | |. His algorithm depends
on these two familiar properties:

ged(a, b) = ged(b, a)

ged(a,a) = a
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together with these additional properties that for all a > b > 0:

ged(2a,2b) = 2ged(a, b)
ged(2a,2b+ 1) = ged(a,2b + 1)
ged(2a+1,2b) = ged(2a + 1, b)
ged(2a+1,2b+1) =ged(2b+1,a —b)

Exercise 5.3 Implement Stein gecd for integers, and prove its termination.

While it might appear that Stein ged depends on the binary represen-
tation of integers, the intuition that 2 is the smallest prime integer allows
generalizing it to other domains by using smallest primes in these domains;
for example, the monomial x for polynomials® or 1 + i for Gaussian inte-

gers.'” Stein ged could be used in rings that are not Euclidean.'!

Project 5.2 Find the correct general setting for Stein ged.

5.7 Quotient

The derivation of fast quotient and remainder exactly parallels our earlier
derivation of fast remainder. We derive an expression for the quotient m and
remainder u from dividing a by b in terms of the quotient n and remainder
v from dividing a by 2b:

a=n(2b)+v

Since the remainder v must be less than the divisor 2b, it follows that

v ifv<b
u =
v—b ifv>b
and
2n ifv<b
m =

2n+1 ifv>b
This leads to the following code:

template<typename T>

requires (ArchimedeanMonoid(T))
pair<QuotientType(T), T>
quotient_remainder_nonnegative(T a, T b)

9. See [ , Exercise 4.6.1.6 (page 435) and Solution (page 673)].
10. See [ ].
11. See [ ].
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{
// Precondition: a > 0/\b >0
typedef QuotientType(T) N;
if (a < b) return pair<N, T>(N(0), a);
if (a - b < b) return pair<N, T>(N(1), a - b);
pair<N, T> q = quotient_remainder_nonnegative(a, b + b);
N m = twice(q.mO);
a = q.ml;
if (a < b) return pair<N, T>(m, a);
else return pair<N, T>(successor(m), a - b);
}

When “halving” is available, we obtain the following:

template<typename T>

requires (HalvableMonoid(T))
pair<QuotientType(T), T>
quotient_remainder_nonnegative_iterative(T a, T b)
{

// Precondition: a > 0/A\b >0

typedef QuotientType(T) N;

if (a < b) return pair<N, T>(N(0), a);

T ¢ = largest_doubling(a, b);

a=a-c;

N n(1);
while (c != b) {
n = twice(n);
c = half(c);
if (c <= a) {
a=a-c;
n = successor(n);
}
}

return pair<N, T>(n, a);
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5.8 Quotient and Remainder for Negative

Quantities

The definition of quotient and remainder used by many computer processors
and programming languages handles negative quantities incorrectly. An
extension of our definitions for an Archimedean monoid to an Archimedean
group T must satisfy these properties, where b # 0:

a = quotient(a, b) - b + remainder(a, b)
[remainder(a, b)| < |b]

remainder(a + b, b) = remainder(a — b, b) = remainder(a, b)

The final property is equivalent to the classical mathematical definition
of congruence.'?> While books on number theory usually assume b > 0,
we can consistently extend remainder to b < 0. These requirements are
not satisfied by implementations that truncate quotient toward zero, thus
violating our third requirement.'® In addition to violating the third require-
ment, truncation is an inferior way of rounding because it sends twice as
many values to zero as to any other integer, thus leading to a nonuniform
distribution.

Given a remainder procedure rem and a quotient-remainder procedure
quo_rem satisfying our three requirements for non-negative inputs, we can
write adapter procedures that give correct results for positive or negative

inputs. These adapter procedures will work on an Archimedean group:

A

ArchimedeanGroup(T) =
ArchimedeanMonoid(T)
N AdditiveGroup(T)

template<typename Op>
requires(BinaryOperation(Op) &&
ArchimedeanGroup (Domain(0p)))
Domain(0Op) remainder (Domain(Op) a, Domain(Op) b, Op rem)

12. “If two numbers a and b have the same remainder r relative to the same modulus
k they will be called congruent relative to the modulus k (following Gauss)” |

]
13. For an excellent discussion of quotient and remainder, see [ ]. Boute identi-
fies the two acceptable extensions as E and F; we follow Knuth in preferring what Boute
calls F.
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// Precondition: b # 0
typedef Domain(Op) T;
T r;
if (a < T(0))
if (b < T(0)) {
r = -rem(-a, -b);
} else {
r = rem(-a, b); if (r '= T(0)) r

1
o
|
3

}
else
if (b < T(0)) {
r = rem(a, -b); if (r '= T(0)) r
} else {

r = rem(a, b);

I
o’
+

3

3

return r;

template<typename F>
requires (HomogeneousFunction(F) && Arity(F) == 2 &&
ArchimedeanGroup(Domain(F)) &&
Codomain(F) == pair<QuotientType(Domain(F)),
Domain(F)>)
pair<QuotientType (Domain(F)), Domain(F)>
quotient_remainder (Domain(F) a, Domain(F) b, F quo_rem)
{
// Precondition: b # 0
typedef Domain(F) T;
pair<QuotientType(T), T> q_r;
if (a < T(O)) {
if (b < T(0)) {
g_r = quo_rem(-a, -b); gq_r.ml = -q_r.mil;
} else {
g_r = quo_rem(-a, b);
if (q_r.ml !'= T(0)) {
g_r.ml = b - g_r.ml; q_r.m0 = successor(q_r.m0);
}
q_r.m0 = -q_r.mO0;
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X
} else {
if (b < T(0)) {
g_r = quo_rem( a, -b);
if (q_r.ml !'= T(0)) {
g.r.ml = b + q_r.ml; g_r.m0 = successor(q_r.mO0);
X
q_r.m0 = -q_r.m0;
b
else
g_r = quo_rem( a, b);
3

return q_r;

Lemma 5.21 remainder and quotient_remainder satisfy our requirements
when their functional parameters satisfy the requirements for positive argu-
ments.

5.9 Concepts and Their Models

We have been using integer types since Chapter 2 without formally defining

the concept. Building on the ordered algebraic structures defined earlier in

this chapter, we can formalize our treatment of integers. First, we define

discrete Archimedean semiring:

DiscreteArchimedeanSemiring(T) &
CommutativeSemiring(T)

/\ ArchimedeanMonoid(T)

A Va,b,ceT)a<bAO<c=a-c<b-c

A —=(HJaeT)0<ax<1

Discreteness refers to the last property: There is no element between 0
and 1.

A discrete Archimedean semiring might have negative elements. The
related concept that does not have negative elements is

NonnegativeDiscrete ArchimedeanSemiring(T) £
Discrete ArchimedeanSemiring(T)
A VaeT)0<a
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A discrete Archimedean semiring lacks additive inverses; the related con-
cept with additive inverses is
DiscreteArchimedeanRing(T) £

DiscreteArchimedeanSemiring(T)
N AdditiveGroup(T)

Two types T and T’ are isomorphic if it is possible to write conversion
functions from T to T’ and from T’ to T that preserve the procedures and
their axioms.

A concept is univalent if any types satisfying it are isomorphic. The con-
cept NonnegativeDiscrete ArchimedeanSemiring is univalent; types satisfy-
ing it are isomorphic to N, the natural numbers.'* Discrete ArchimedeanRing
is univalent; types satisfying it are isomorphic to Z, the integers. As we have
seen here, adding axioms reduces the number of models of a concept, so that
one quickly reaches the point of univalency.

This chapter proceeds deductively, from more general to more specific
concepts, by adding more operations and axioms. The deductive approach
statically presents a taxonomy of concepts and affiliated theorems and algo-
rithms. The actual process of discovery proceeds inductively, starting with
concrete models, such as integers or reals, and then removing operations and
axioms to find the weakest concept to which interesting algorithms apply.

When we define a concept, the independence and consistency of its ax-
ioms must be verified, and its usefulness must be demonstrated.

A proposition is independent from a set of axioms if there is a model
in which all the axioms are true, but the proposition is false. For example,
associativity and commutativity are independent: String concatenation is
associative but not commutative, while the average of two values (*3¥) is
commutative but not associative. A proposition is dependent or provable
from a set of axioms if it can be derived from them.

A concept is consistent if it has a model. Continuing our example,
addition of natural numbers is associative and commutative. A concept is
inconsistent if both a proposition and its negation can be derived from its
axioms. In other words, to demonstrate consistency, we construct a model;
to demonstrate inconsistency, we derive a contradiction.

A concept is useful if there are useful algorithms for which this is the
most abstract setting. For example, parallel out-of-order reduction applies
to any associative, commutative operation.

14. We follow [ , page 27] and include O in the natural numbers.
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5.10 Computer Integer Types

Computer instruction sets typically provide partial representations of natu-
ral numbers and integers. For example, a bounded unsigned binary integer
type, Uy, where n = 8,16,32,64, ..., is an unsigned integer type capable of
representing a value in the interval [0,2™); a bounded signed binary integer
type, Sn, where n = 8,16, 32,64, .. ., is a signed integer type capable of rep-
resenting a value in the interval [—2™~1, 2™~ 1), Although these types are
bounded, typical computer instructions provide total operations on them
because the results are encoded as a tuple of bounded values.

Instructions on bounded unsigned types with signatures like these usu-

ally exist:
sum_extended : U,, x U, x U; — U; x U,
difference_extended : U, x U,, x U; — U; x Uy
product_extended : U,, x U, — Usy
quotient_remainder_extended : U,, x U, — Uy x Uy

Observe that Uy, can be represented as Uy, x U, (a pair of U, ). Program-
ming languages that provide full access to these hardware operations make
it possible to write efficient and abstract software components involving
integer types.

Project 5.3 Design a family of concepts for bounded unsigned and signed
binary integers. A study of the instruction sets for modern computer ar-
chitectures shows the functionality that should be encompassed. A good
abstraction of these instruction sets is provided by MMIX [ ].

5.11 Conclusions

We can combine algorithms and mathematical structures into a seamless
whole by describing algorithms in abstract terms and adjusting theories to fit
algorithmic requirements. The mathematics and algorithms in this chapter
are abstract restatements of results that are more than two thousand years
old.






Chapter 6

Iterators

Tu’s chapter introduces the concept of iterator: an interface between
algorithms and sequential data structures. A hierarchy of iterator concepts
corresponds to different kinds of sequential traversals: single-pass forward,

L' We investigate a va-

multipass forward, bidirectional, and random access.
riety of interfaces to common algorithms, such as linear and binary search.
Bounded and counted ranges provide a flexible way of defining interfaces for

variations of a sequential algorithm.

6.1 Readability

Every object has an address: an integer index into computer memory. Ad-
dresses allow us to access or modify an object. In addition, they allow us
to create a wide variety of data structures, many of which rely on the fact
that addresses are effectively integers and allow integer-like operations.

Iterators are a family of concepts that abstract different aspects of ad-
dresses, allowing us to write algorithms that work not only with addresses
but also with any addresslike objects satisfying the minimal set of require-
ments. In Chapter 7 we introduce an even broader conceptual family: co-
ordinate structures.

There are two kinds of operations on iterators: accessing values or traver-
sal. There are three kinds of access: reading, writing, or both reading and
writing. There are four kinds of linear traversal: single-pass forward (an in-

1. Our treatment of iterators is a further refinement of the one in [ ]
but differs from it in several aspects.

87
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put stream), multipass forward (a singly linked list), bidirectional (a doubly
linked list), and random access (an array).

This chapter studies the first kind of access: readability, that is, the
ability to obtain the value of the object denoted by another. A type T is
readable if a unary function source defined on it returns an object of type
ValueType(T):

Readable(T) &
Regular(T)
A ValueType : Readable — Regular
N source: T — ValueType(T)

source is only used in contexts in which a value is needed; its result can
be passed to a procedure by value or by constant reference.

There may be objects of a readable type on which source is not de-
fined; source does not have to be total. The concept does not provide a
definition-space predicate to determine whether source is defined for a par-
ticular object. For example, given a pointer to a type T, it is impossible to
determine whether it points to a validly constructed object. Validity of the
use of source in an algorithm must be derivable from preconditions.

Accessing data by calling source on an object of a readable type is as
fast as any other way of accessing this data. In particular, for an object of a
readable type with value type T residing in main memory, we expect the cost
of source to be approximately equal to the cost of dereferencing an ordinary
pointer to T. As with ordinary pointers, there could be nonuniformity owing
to the memory hierarchy. In other words, there is no need to store pointers
instead of iterators to speed up an algorithm.

It is useful to extend source to types whose objects don’t point to other
objects. We do this by having source return its argument when applied to
an object of such a type. This allows a program to specify its requirement
for a value of type T in such a way that the requirement can be satisfied
by a value of type T, a pointer to type T, or, in general, any readable type
with a value type of T. Therefore we assume that unless otherwise defined,
ValueType(T) = T and that source returns the object to which it is applied.

6.2 Iterators

Traversal requires the ability to generate new iterators. As we saw in Chap-
ter 2, one way to generate new values of a type is with a transformation.
While transformations are regular, some one-pass algorithms do not require
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regularity of traversal, and some models, such as input streams, do not pro-
vide regularity of traversal. Thus the weakest iterator concept requires only
the pseudotransformation® successor and the type function DistanceType:

Tterator(T) &
Regular(T)
/\ DistanceType : Iterator — Integer
A successor : T — T
/\ successor is not necessarily regular

DistanceType returns an integer type large enough to measure any se-
quence of applications of successor allowable for the type. Since regularity
is assumed by default, we must explicitly state that it is not a requirement
for successor.

As with source on readable types, successor does not have to be to-
tal; there may be objects of an iterator type on which successor is not
defined. The concept does not provide a definition-space predicate to de-
termine whether successor is defined for a particular object. For example, a
pointer into an array contains no information indicating how many times it
could be incremented. Validity of the use of successor in an algorithm must
be derivable from preconditions.

The following defines the action corresponding to successor:

template<typename I>
requires(Iterator(I))

void increment(I& x)

{
// Precondition: successor(x) is defined

x = successor(x);

Many important algorithms, such as linear search and copying, are single-
pass; that is, they apply successor to the value of each iterator once. There-
fore they can be used with input streams, and that is why we drop the
requirement for successor to be regular: 1 =j does not imply successor(i) =
successor(j) even when successor is defined. Furthermore, after successor(1i) is
called, 1 and any iterator equal to it may no longer be well formed. They re-
main partially formed and can be destroyed or assigned to; successor, source,
and = should not be applied to them.

2. A pseudotransformation has the signature of a transformation but is not regular.
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Note that successor(i) = successor(j) does not imply that i = j. Consider,
for example, two null-terminating singly linked lists.

An iterator provides as fast a linear traversal through an entire collection
of data as any other way of traversing that data.

In order for an integer type to model Iterator, it must have a distance
type. An unsigned integer type is its own distance type; for any bounded
signed binary integer type S;, its distance type is the corresponding un-

signed type U,,.

6.3 Ranges

When f is an object of an iterator type and n is an object of the correspond-
ing distance type, we want to be able to define algorithms operating on a
weak range [f,n) of n iterators beginning with f, using code of the form

while (!zero(n)) { n = predecessor(n); ... f = successor(f); }

This property enables such an iteration:

property (1 : Iterator)
weak_range : [ x DistanceType(I)
(f,n) — (Vi € DistanceType(1))
(0 < i< n)= successort(f) is defined

Lemma 6.1 0 <j < 1/ weak_range(f,1) = weak_range(f,j)
In a weak range, we can advance up to its size:

template<typename I>
requires(Iterator(I))

I operator+(I f, DistanceType(I) n)

{
// Precondition: n > 0 /\ weak_range(f, n)
while (!zero(n)) {
n = predecessor(n);
f = successor(f);
}
return f;
}

The addition of the following axiom ensures that there are no cycles in

the range:
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property (1 : Iterator)
counted_range : I x DistanceType(I)
(f,n) — weak_range(f,n) A
(Vi,j € DistanceType(I)) (0 <i<j<n) =
successor!(f) # successor) (f)

When f and 1 are objects of an iterator type, we want to be able to define
algorithms working on a bounded range [f,1) of iterators beginning with f
and limited by 1, using code of the form

while (f '=1) { ... f = successor(f); }

This property enables such an iteration:

property (1 : Iterator)
bounded_range : I x I
(f,1) — (Jk € DistanceType(I)) counted_range(f, k) /A successor®(f) =1

The structure of iteration using a bounded range terminates the first
time 1 is encountered; therefore, unlike a weak range, it cannot have cycles.
In a bounded range, we can implement® a partial subtraction on itera-

tors:

template<typename I>
requires(Iterator(I))
DistanceType(I) operator-(I 1, I f)
{
// Precondition: bounded_range(f,1)
DistanceType(I) n(0);
while (f '= 1) {
n = successor(n);
f = successor(f);
}

return n;

Because successor may not be regular, subtraction should be used only
in preconditions or in situations in which we only want to compute the size
of a bounded range.

Our definitions of + and — between iterators and integers are not incon-
sistent with mathematical usage, where 4+ and — are always defined on the
same type. As in mathematics, both + between iterators and integers and

3. Notice the similarity to distance from Chapter 2.
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— between iterators are defined inductively in terms of successor. The stan-
dard inductive definition of addition on natural numbers uses the successor
function:*

a+0=a

a + successor(b) = successor(a + b)

Our iterative definition of f+mn for iterators is equivalent even though f and
n are of different types. As with natural numbers, a variant of associativity
is provable by induction.

Lemma 6.2 (f + n) + m =f+ (n + m)

In preconditions we need to specify membership within a range. We
borrow conventions from intervals (see Appendix A) to introduce half-open
and closed ranges. We use variations of the notation for weak or counted
ranges and for bounded ranges.

A half-open weak or counted range [f,n), where n > 0 is an integer,
denotes the sequence of iterators {successor®(f)|0 < k < n}. A closed weak
or counted range [[f,n], where n > 0 is an integer, denotes the sequence of
iterators {successor®(f) |0 < k < n}.

A half-open bounded range [f,1) is equivalent to the half-open counted
range [f,1 —f). A closed bounded range [f,1] is equivalent to the closed
counted range [f,1— f].

The size of a range is the number of iterators in the sequence it denotes.

Lemma 6.3 successor is defined for every iterator in a half-open range and
for every iterator except the last in a closed range.

If r is a range and 1 is an iterator, we say that i € r if 1 is a member of
the corresponding set of iterators.

Lemma 6.4 If i € [f, 1), both [f,1) and [i,1) are bounded ranges.

Empty half-open ranges are specified by [i,0) or [i,1) for some iterator
i. There are no empty closed ranges.

Lemma 6.51 ¢ [i,0) A i€ [i,1)
Lemma 6.6 Empty ranges have neither first nor last elements.

It is useful to describe an empty sequence of iterators starting at a partic-
ular iterator. For example, binary search looks for the sequence of iterators

4. First introduced in [ ]; Grassmann’s definition was popularized in

[1908].
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whose values are equal to a given value. This sequence is empty if there are
no such values but is positioned where they would appear if inserted.

An iterator 1 is called the limit of a half-open bounded range [f,1). An
iterator f 4+ n is the limit of a half-open weak range [f,n). Observe that an
empty range has a limit even though it does not have a first or last element.

Lemma 6.7 The size of a half-open weak range [f,n) is n. The size of a
closed weak range [f,n] is n + 1. The size of a half-open bounded range
[f,1) is 1 — f. The size of a closed bounded range [f,1] is (1 —f) + 1.

If i and j are iterators in a counted or bounded range, we define the
relation i < j to mean that i # j /A bounded_range(i,j): in other words,
that one or more applications of successor leads from i to j. The relation
=< (“precedes”) and the corresponding reflexive relation =< (“precedes or
equal”) are used in specifications, such as preconditions and postconditions
of algorithms. For many pairs of values of an iterator type, < is not defined,
so there is often no effective way to write code implementing <. For example,
there is no efficient way to determine whether one node precedes another in
a linked structure; the nodes might not even be linked together.

6.4 Readable Ranges

A range of iterators from a type modeling Readable and Iterator is readable
if source is defined on all the iterators in the range:

property(I : Readable)
requires(lterator(1))
readable_bounded_range : I x I
(f,1) — bounded_range(f,1) A (Vi € [f,1)) source(i) is defined

Observe that source need not be defined on the limit of the range. Also,
since an iterator may no longer be well-formed after successor is applied, it
is not guaranteed that source can be applied to an iterator after its succes-
sor has been obtained. readable_weak_range and readable_counted_range are
defined similarly.

Given a readable range, we could apply a procedure to each value in the

range:

template<typename I, typename Proc>
requires (Readable(I) && Iterator(I) &&
Procedure(Proc) && Arity(Proc) == 1 &&
ValueType(I) == InputType(Proc, 0))
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Proc for_each(I f, I 1, Proc proc)

{
// Precondition: readable_bounded_range(f,1)
while (f != 1) {
proc(source(f));
f = successor(f);
¥
return proc;
}

We return the procedure because it could have accumulated useful in-
formation during the traversal.’
We implement linear search with the following procedure:

template<typename I>
requires (Readable(I) && Iterator(I))
I find(I £, I 1, const ValueType(I)& x)

{
// Precondition: readable_bounded_range(f,1)
while (f != 1 && source(f) != x) f = successor(f);
return f;

}

Either the returned iterator is equal to the limit of the range, or its value
is equal to x. Returning the limit indicates failure of the search. Since there
are n+ 1 outcomes for a search of a range of size n, the limit serves a useful
purpose here and in many other algorithms. A search involving find can
be restarted by advancing past the returned iterator and then calling find
again.

Changing the comparison with x to use equality instead of inequality
gives us find_not.

We can generalize from searching for an equal value to searching for the
first value satisfying a unary predicate:

template<typename I, typename P>
requires (Readable(I) && Iterator(I) &&
UnaryPredicate(P) && ValueType(I) == Domain(P))
I find_if(I £, I 1, P p)
{
// Precondition: readable_bounded_range(f,1)
while (f != 1 && !p(source(f))) f = successor(f);

5. A function object can be used in this way.
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return f;

Applying the predicate instead of its complement gives us find_if _not.

Exercise 6.1 Use find_if and find_if_not to implement quantifier functions
all, none, not_all, and some, each taking a bounded range and a predicate.

The find and quantifier functions let us search for values satisfying a
condition; we can also count the number of satisfying values:

template<typename I, typename P, typename J>
requires (Readable(I) && Iterator(I) &&
UnaryPredicate(P) && Iterator(J) &&
ValueType(I) == Domain(P))
J count_if(I £, I 1, Pp, J j)

{
// Precondition: readable_bounded_range(f,1)
while (f != 1) {
if (p(source(f))) j = successor(j);
f = successor(f);
}
return j;
}

Passing j explicitly is useful when adding an integer to j takes linear
time. The type ] could be any integer or iterator type, including I.

Exercise 6.2 Implement count_if by passing an appropriate function ob-
ject to for_each and extracting the accumulation result from the returned
function object.

The natural default is to start the count from zero and use the distance
type of the iterators:

template<typename I, typename P>
requires(Readable(I) && Iterator(I) &&
UnaryPredicate(P) && ValueType(I) == Domain(P))
DistanceType(I) count_if(I £, I 1, P p) {
// Precondition: readable_bounded_range(f,1)
return count_if(f, 1, p, DistanceType(I)(0));

Replacing the predicate with an equality test gives us count; negating
the tests gives us count_not and count_if_not.
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The notation ) i, a; for the sum of the a; is frequently generalized
to other binary operations; for example, [ ], a; is used for products and
Ai_o ai for conjunctions. In each case, the operation is associative, which
means that the grouping is not important. Kenneth Iverson unified this
notation in the programming language APL with the reduction operator /,
which takes a binary operation and a sequence and reduces the elements
into a single result.® For example, +/1 2 3 equals 6.

Iverson does not restrict reduction to associative operations. We extend
Iverson’s reduction to work on iterator ranges but restrict it to partially
associative operations: If an operation is defined between adjacent elements,
it can be reassociated:

property(Op : BinaryOperation)
partially_associative : Op
op — (Va,b,c € Domain(Op))
If op(a,b) and op(b,c) are defined,
op(op(a,b),c) and op(a,op(b,c))) are defined
and are equal.

As an example of an operation that is partially associative but not as-
sociative, consider concatenation of two ranges [fo, lp) and [f1,11), which is
defined only when 1y = f;.

We allow a unary function to be applied to each iterator before the binary
operation is performed, obtaining a; from i. Since an arbitrary partially
associative operation might not have an identity, we provide a version of
reduction requiring a nonempty range:

template<typename I, typename Op, typename F>
requires(Iterator(I) && BinaryOperation(Op) &&

UnaryFunction(F) &&

I == Domain(F) && Codomain(F) == Domain(0p))
Domain(0Op) reduce_nonempty(I £, I 1, Op op, F fun)
{

// Precondition: bounded_range(f,1) Af #1
// Precondition: partially_associative(op)

// Precondition: (Vx € [f,1)) fun(x) is defined
Domain(0Op) r = fun(f);

f = successor(f);

while (£ !'= 1) {

6. See [ ]
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op(r, fun(£));
successor (f);

H R
1]

}

return r;

The natural default for fun is source. An identity element can be passed

in to be returned on an empty range:

template<typename I, typename Op, typename F>
requires(Iterator(I) &% BinaryOperation(Op) &&

UnaryFunction(F) &&

I == Domain(F) && Codomain(F) == Domain(0p))
Domain(0Op) reduce(I f, I 1, Op op, F fun, const Domain(Op)& z)
{

// Precondition: bounded_range(f,1)

// Precondition: partially_associative(op)

// Precondition: (Vx € [f,1)) fun(x) is defined
if (f == 1) return z;

return reduce_nonempty(f, 1, op, fun);

When operations involving the identity element are slow or require extra
logic to implement, the following procedure is useful:

template<typename I, typename Op, typename F>
requires(Iterator(I) && BinaryOperation(Op) &&
UnaryFunction(F) &&
I == Domain(F) && Codomain(F) == Domain(0p))
Domain(0Op) reduce_nonzeroes(I f, I 1,

Op op, F fun, const Domain(Op)& z)

// Precondition: bounded_range(f,1)
// Precondition: partially_associative(op)
// Precondition: (Vx € [f,1)) fun(x) is defined
Domain(0p) x;
do {
if (f == 1) return z;
fun(f);
f = successor(f);
} while (x == z);

X
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while (f !'= 1) {
Domain(Op) y = fun(f);
if (y '= 2) x = op(x, y);
f = successor(f);

}

return Xx;

Algorithms taking a bounded range have a corresponding version taking
a weak or counted range; more information, however, needs to be returned:

template<typename I, typename Proc>
requires(Readable(I) && Iterator(I) &&
Procedure(Proc) && Arity(Proc) == 1 &&
ValueType(I) == InputType(Proc, 0))
pair<Proc, I> for_each_n(I f, DistanceType(I) n, Proc proc)
{
// Precondition: readable_weak_range(f, 1)
while (!zero(n)) {
n = predecessor(n);
proc(source(f));
f = successor(f);
}

return pair<Proc, I>(proc, f);

The final value of the iterator must be returned because the lack of
regularity of successor means that it could not be recomputed. Even for
iterators where successor is regular, recomputing it could take time linear in

the size of the range.

template<typename I>
requires(Readable(I) && Iterator(I))
pair<I, DistanceType(I)> find_n(I f, DistanceType(I) n,
const ValueType(I)& x)

{
// Precondition: readable_weak_range(f,n)
while (!zero(n) && source(f) !'= x) {
n = predecessor(n);
f = successor(f);
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return pair<I, DistanceType(I)>(f, n);

find_n returns the final value of the iterator and the count because both
are needed to restart a search.

Exercise 6.3 Implement variations taking a weak range instead of a bounded
range of all the versions of find, quantifiers, count, and reduce.

We can eliminate one of the two tests in the loop of find_if when we are
assured that an element in the range satisfies the predicate; such an element
is called a sentinel:

template<typename I, typename P>
requires (Readable(I) && Iterator(I) &&
UnaryPredicate(P) && ValueType(I) == Domain(P))
I find_if_unguarded(I f, P p) {
// Precondition: (31) readable_bounded_range(f,1) A some(f,1,p)
while (!p(source(f))) f = successor(f);
return f;
// Postcondition: p(source(f))

Applying the predicate instead of its complement gives find_if _not_unguarded.
Given two ranges with the same value type and a relation on that value
type, we can search for a mismatched pair of values:

template<typename IO, typename I1, typename R>
requires(Readable(I0) && Iterator(I0) &&
Readable(I1) && Iterator(I1l) && Relation(R) &&
ValueType(I0) == ValueType(I1l) &&
ValueType(I0) == Domain(R))
pair<IO, I1> find_mismatch(IO fO, IO 10, I1 f1, I1 11, R r)
{
// Precondition: readable_bounded_range(f0, 10)
// Precondition: readable_bounded_range(f1,11)
while (£f0 '= 10 && f1 '= 11 && r(source(f0), source(f1))) {
f0
f1

successor (£0) ;

successor (f1);

}
return pair<IO, I1>(f0, f1);
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Exercise 6.4 State the postcondition for find_mismatch, and explain why
the final values of both iterators are returned.

The natural default for the relation in find_mismatch is the equality on

the value type.

Exercise 6.5 Design variations of find_mismatch for all four combinations

of counted and bounded ranges.

Sometimes, it is important to find a mismatch not between ranges but

between adjacent elements of the same range:

template<typename I, typename R>
requires(Readable(I) && Iterator(I) &&
Relation(R) && ValueType(I) == Domain(R))
I find_adjacent_mismatch(I £, I 1, R r)
{
// Precondition: readable_bounded_range(f,1)
if (f == 1) return 1;
ValueType(I) x = source(f);
f = successor(f);
while (f '= 1 && r(x, source(f))) {
X
£

source(f);

successor (f);

3

return f;

We must copy the previous value because we cannot apply source to an
iterator after successor has been applied to it. The weak requirements of
Iterator also imply that returning the first iterator in the mismatched pair

may return a value that is not well formed.

6.5 Increasing Ranges

Given a relation on the value type of some iterator, a range over that iterator
type is called relation preserving if the relation holds for every adjacent pair
of values in the range. In other words, find_adjacent_mismatch will return
the limit when called with this range and relation:

template<typename I, typename R>
requires(Readable(I) && Iterator(I) &&
Relation(R) && ValueType(I) == Domain(R))
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bool relation_preserving(I £, I 1, R r)
{
// Precondition: readable_bounded_range(f,1)

return 1 == find_adjacent_mismatch(f, 1, r);

Given a weak ordering r, we say that a range is r-increasing if it is
relation preserving with respect to the complement of the converse of r.
Given a weak ordering 1, we say that a range is strictly r-increasing if it is
relation preserving with respect to r.7 It is straightforward to implement a
test for a strictly increasing range:

template<typename I, typename R>
requires(Readable(I) && Iterator(I) &&
Relation(R) && ValueType(I) == Domain(R))
bool strictly_increasing range(I £, I 1, R r)
{
// Precondition: readable_bounded_range(f, 1) /\ weak_ordering(r)
return relation_preserving(f, 1, r);

With the help of a function object, we can implement a test for an
increasing range:

template<typename R>
requires(Relation(R))
struct complement_of_converse
{
typedef Domain(R) T;
R r;
complement_of _converse(const R& r) : r(r) { }
bool operator() (const T& a, const T& b)
{

return !'r(b, a);

template<typename I, typename R>

7.Some authors use nondecreasing and increasing instead of increasing and strictly in-
creasing, respectively.
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requires (Readable(I) && Iterator(I) &&
Relation(R) && ValueType(I) == Domain(R))
bool increasing range(I f, I 1, R r)

{
// Precondition: readable_bounded_range(f, 1) /\ weak_ordering(r)
return relation_preserving(
f, 1,
complement_of _converse<R>(r)) ;
}
Defining strictly_increasing_counted_range and increasing_counted_range is
straightforward.

Given a predicate p on the value type of some iterator, a range over that
iterator type is called p-partitioned if any values of the range satisfying the
predicate follow every value of the range not satisfying the predicate. A test
that shows whether a range is p-partitioned is straightforward:

template<typename I, typename P>
requires(Readable(I) && Iterator(I) &&
UnaryPredicate(P) && ValueType(I) == Domain(P))
bool partitioned(I f, I 1, P p)
{
// Precondition: readable_bounded_range(f,1)
return 1 == find_if_not(find_if(f, 1, p), 1, p);

The iterator returned by the call of find_if is called the partition point;
it is the first iterator, if any, whose value satisfies the predicate.

Exercise 6.6 Implement the predicate partitioned_n, which tests whether a
counted range is p-partitioned.

Linear search must invoke source after each application of successor be-
cause a failed test provides no information about the value of any other
iterator in the range. However, the uniformity of a partitioned range gives
us more information.

Lemma 6.8 If p is a predicate and [f, 1) is a p-partitioned range:

(Vm € [f,1)) =p(source(m)) = (Vj € [f, m]) —p(source(j))
(vm e [f,1)) p(source(m)) = (Vj € [m, 1)) p(source(j))

This suggests a bisection algorithm for finding the partition point: As-
suming a uniform distribution, testing the midpoint of the range reduces



6.6 Forward Iterators 103

the search space by a factor of 2. However, such an algorithm may need
to traverse an already traversed subrange, which requires the regularity of

successor.

6.6 Forward Iterators

Making successor regular allows us to pass through the same range more
than once and to maintain more than one iterator into the range:

ForwardIterator(T) £
Iterator(T)
/A regular_unary_function(successor)

Note that Iterator and Forwardlterator differ only by an axiom; there
are no new operations. In addition to successor, all the other functional pro-
cedures defined on refinements of the forward iterator concept introduced
later in the chapter are regular. The regularity of successor allows us to im-
plement find_adjacent_mismatch without saving the value before advancing:

template<typename I, typename R>
requires (Readable(I) && ForwardIterator(I) &&
Relation(R) && ValueType(I) == Domain(R))
I find_adjacent_mismatch_forward(I £, I 1, R r)

{
// Precondition: readable_bounded_range(f,1)
if (f == 1) return 1;
It;
do {
t =1,
f = successor(f);
} while (f !'= 1 && r(source(t), source(f)));
return f;
}

Note that t points to the first element of this mismatched pair and could
also be returned.

In Chapter 10 we show how to use concept dispatch to overload versions
of an algorithm written for different iterator concepts. Suffixes such as
_forward allow us to disambiguate the different versions.

The regularity of successor also allows us to implement the bisection
algorithm for finding the partition point:
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template<typename I, typename P>
requires (Readable(I) && ForwardIterator(I) &&
UnaryPredicate(P) && ValueType(I) == Domain(P))
I partition_point_n(I f, DistanceType(I) n, P p)
{
// Precondition: readable_counted_range(f,n) /\ partitioned_n(f, 1, p)
while (!zero(n)) {
DistanceType(I) h = half_nonnegative(n);

Im=f +h;
if (p(source(m))) {
n = h;
} else {
n = n - successor(h); f = successor(m);
}
}
return f;

Lemma 6.9 partition_point_n returns the partition point of the p-partitioned
range [f,n]).

Finding the partition point in a bounded range by bisection® requires
first finding the size of the range:

template<typename I, typename P>
requires (Readable(I) && ForwardIterator(I) &&
UnaryPredicate(P) && ValueType(I) == Domain(P))
I partition_point(I £, I 1, P p)
{
// Precondition: readable_bounded_range(f,1) /\ partitioned(f, 1, p)
return partition_point_n(f, 1 - £, p);

The definition of partition point immediately leads to binary search algo-
rithms on an r-increasing range for a weak ordering r. Any value a, whether
or not it appears in the increasing range, determines two iterators in the
range called lower bound and upper bound. Informally, a lower bound is the

8. The bisection technique dates back at least as far as the proof of the Intermediate Value
Theorem in [ ] and, independently, in [ ]. While Bolzano and
Cauchy used the technique for the most general case of continuous functions,

[ ] had previously used it to solve a particular problem of approximating a root of
a polynomial. The first description of bisection for searching was John W. Mauchly’s
lecture “Sorting and collating” [ ].
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first position where a value equivalent to a could occur in the increasing
sequence. Similarly, an upper bound is the successor of the last position
where a value equivalent to a could occur. Therefore elements equivalent
to a appear only in the half-open range from lower bound to upper bound.
For example, assuming total ordering, a sequence with lower bound | and

upper bound u for the value a looks like this:

X05 X1y ooy X1—1, X1y« o s Xu—1, Xuy Xu+1y - -+ Xn—1

xi<a Xi=a Xi>a
Note that any of the three regions may be empty.

Lemma 6.10 In an increasing range [f, 1), for any value a of the value type
of the range, the range is partitioned by the following two predicates:

lower_bound (x) & —r(x, a)
upper_bound, (x) < r(a,x)

That allows us to formally define lower bound and upper bound as the
partition points of the corresponding predicates.

Lemma 6.11 The lower-bound iterator precedes or equals the upper-bound
iterator.

Implementing a function object corresponding to the predicate leads
immediately to an algorithm for determining the lower bound:

template<typename R>
requires(Relation(R))
struct lower_bound_predicate

{
typedef Domain(R) T;
const T& a;
R r;
lower_bound_predicate(const T& a, R r) : a(a), r(r) { }
bool operator() (const T& x) { return !r(x, a); }
};

template<typename I, typename R>
requires (Readable(I) && ForwardIterator(I) &&
Relation(R) && ValueType(I) == Domain(R))
I lower_bound_n(I f, DistanceType(I) n,
const ValueType(I)& a, R r)
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{
// Precondition: weak_ordering(r) /\ increasing_counted_range(f,n, 1)
lower_bound_predicate<R> p(a, r);
return partition_point_n(f, n, p);

}

Similarly, for the upper bound:

template<typename R>
requires(Relation(R))
struct upper_bound_predicate

{
typedef Domain(R) T;
const T& a;
R r;
upper_bound_predicate(const T& a, R r) : a(a), r(r) { }
bool operator() (const T& x) { return r(a, x); }
+;

template<typename I, typename R>
requires(Readable(I) && ForwardIterator(I) &&
Relation(R) && ValueType(I) == Domain(R))
I upper_bound_n(I f, DistanceType(I) n,
const ValueType(I)& a, R r)

{
// Precondition: weak_ordering(r) /\ increasing_counted_range(f,n, )
upper_bound_predicate<R> p(a, r);
return partition_point_n(f, n, p);

}

Exercise 6.7 Implement a procedure that returns both lower and upper
bounds and does fewer comparisons than the sum of the comparisons that
would be done by calling both lower_bound_n and upper_bound_n.”

Applying the predicate in the middle of the range ensures the optimal
worst-case number of predicate applications in the partition-point algorithm.
Any other choice would be defeated by an adversary who ensures that the
larger subrange contains the partition point. Prior knowledge of the ex-
pected position of the partition point would lead to probing at that point.

9. A similar STL function is called equal_range.
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partition_point_n applies the predicate [log, .|+ 1 times, since the length
of the range is reduced by a factor of 2 at each step. The algorithm performs
a logarithmic number of iterator/integer additions.

Lemma 6.12 For a forward iterator, the total number of successor oper-
ations performed by the algorithm is less than or equal to the size of the

range.

partition_point also calculates 1 — f, which, for forward iterators, adds
another n calls of successor. It is worthwhile to use it on forward iterators,
such as linked lists, whenever the predicate application is more expensive
than calling successor.

Lemma 6.13 Assuming that the expected distance to the partition point
is equal to half the size of the range, partition_point is faster than find_if on
finding the partition point for forward iterators whenever

1 2logomn
COSbsyccessor < 5(1 -2

)COStpredicate

6.7 Indexed Iterators

In order for partition_point, lower_bound, and upper_bound to dominate lin-
ear search, we need to ensure that adding an integer to an iterator and
subtracting an iterator from an iterator are fast:

Indezedlterator(T) £
ForwardIterator(T)
A +:T x DistanceType(T) — T
A —:T x T — DistanceType(T)
/\ + takes constant time
/\ — takes constant time

The operations + and —, which were defined for Iterator in terms of
successor, are now required to be primitive and fast: This concept differs
from Forwardlterator only by strengthening complexity requirements. We
expect the cost of + and — on indexed iterators to be essentially identical
to the cost of successor.

6.8 Bidirectional Iterators

There are situations in which indexing is not possible, but we have the
ability to go backward:



108 Iterators

Bidirectionallterator(T) &
ForwardIterator(T)

/A predecessor : T — T

/\ predecessor takes constant time

A (Vi€ T)successor(i) is defined =
predecessor(successor(i)) is defined and equals i

/\ (Vi e T) predecessor(i) is defined =
successor (predecessor(1)) is defined and equals 1

As with successor, predecessor does not have to be total; the axioms of
the concept relate its definition space to that of successor. We expect the
cost of predecessor to be essentially identical to the cost of successor.

Lemma 6.14 If successor is defined on bidirectional iterators i and j,
successor (i) = successor(j) = i =]

In a weak range of bidirectional iterators, movement backward as far as
the beginning of the range is possible:

template<typename I>
requires(BidirectionalIterator(I))
I operator-(I 1, DistanceType(I) n)

{
// Precondition: n > 0 (3f € I)weak_range(f,n) Al=f+n
while (!zero(n)) {
n = predecessor(n);
1 = predecessor(l);
}
return 1;
}

With bidirectional iterators, we can search backward. As we noted ear-
lier, when searching a range of n iterators, there are n 4 1 outcomes; this is
true whether we search forward or backward. So we need a convention for
representing the returned value. To indicate “not found,” we return f, which
forces us to return successor(i) if we find a satisfying element at iterator i:

template<typename I, typename P>
requires (Readable(I) && Bidirectionallterator(I) &&
UnaryPredicate(P) && ValueType(I) == Domain(P))
I find_backward_if(I £, I 1, P p)
{
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// Precondition: readable_bounded_range(f,1)
while (1 != f && !p(source(predecessor(l))))
1 = predecessor(l);

return 1;

Comparing this with find_if illustrates a program transformation: f and 1
interchange roles, source(i) becomes source(predecessor(i)), and successor (i)
becomes predecessor(i). Under this transformation, in a nonempty range, 1
is dereferenceable, but f is not.

The program transformation just demonstrated can be applied to any
algorithm that takes a range of forward iterators. Thus it is possible to im-
plement an adapter type that, given a bidirectional iterator type, produces
another bidirectional iterator type where successor becomes predecessor,
predecessor becomes successor, and source becomes source of predecessor.'?
This adapter type allows any algorithm on iterators or forward iterators to
work backward on bidirectional iterators, and it also allows any algorithm

on bidirectional iterators to interchange the traversal directions.

Exercise 6.8 Rewrite find_backward_if with only one call of predecessor in
the loop.

Exercise 6.9 As an example of an algorithm that uses both successor and
predecessor, implement a predicate that determines whether a range is a
palindrome: It reads the same way forward and backward.

6.9 Random-Access Iterators

Some iterator types satisfy the requirements of both indexed and bidirec-
tional iterators. These types, called random-access iterators, provide the
full power of computer addresses:

RandomAccessIterator(T) =
IndexedIterator(T) N Bidirectionallterator(T)
A\ TotallyOrdered(T)
AN VMi,jeT)li<jei<]j
/A DifferenceType : RandomAccesslterator — Integer
A +: T x DifferenceType(T) = T
A —: T x DifferenceType(T) = T
A —:T x T — DifferenceType(T)

10.In STL this is called a reverse iterator adapter.
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/A < takes constant time
/A — between an iterator and an integer takes constant time

DifferenceType(T) is large enough to contain distances and their additive
inverses; if 1 and j are iterators from a valid range, i —j is always defined.
It is possible to add a negative integer to, or subtract it from, an iterator.

On weaker iterator types, the operations + and — are only defined within
one range. For random-access iterator types, this holds for < as well as for
+ and —. In general, an operation on two iterators is defined only when
they belong to the same range.

Project 6.1 Define axioms relating the operations of random-access itera-
tors to each other.

We do not describe random-access iterators in great detail, because of
the following.

Theorem 6.1 For any procedure defined on an explicitly given range of
random-access iterators, there is another procedure defined on indexed it-
erators with the same complexity.

Proof. Since the operations on random-access iterators are only defined on
iterators belonging to the same range, it is possible to implement an adapter
type that, given an indexed iterator type, produces a random-access iterator
type. The state of such an iterator contains an iterator f and an integer i
and represents the iterator f+1i. The iterator operations, such as +, —, and
<, operate on 1i; source operates on f+1i. In other words, an iterator pointing
to the beginning of the range, together with an index into the range, behave
like a random-access iterator. O

The theorem shows the theoretical equivalence of these concepts in any
context in which the beginnings of ranges are known. In practice, we have
found that there is no performance penalty for using the weaker concept.
In some cases, however, a signature needs to be adjusted to include the
beginning of the range.

Project 6.2 Implement a family of abstract procedures for finding a subse-
quence within a sequence. Describe the tradeoffs for selecting an appropriate
algorithm.'!

11. Two of the best-known algorithms for this problem are [ ] and
[ ] [ | serves as a good foundation for the
abstract setting for these algorithms.
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Figure 6.1: Iterator concepts

6.10 Conclusions

Algebra provides us with a hierarchy of concepts, such as semigroups, mon-
oids, and groups, that allows us to state algorithms in the most general
context. Similarly, the iterator concepts (Figure 6.1) allow us to state al-
gorithms on sequential data structures in their most general context. The
development of these concepts used three kinds of refinement: adding an op-
eration, strengthening semantics, and tightening complexity requirement. In
particular, the three concepts iterator, forward iterator, and indezed iterator
differ not by their operations but only by their semantics and complexity.
A variety of search algorithms for different iterator concepts, counted and
bounded ranges, and range ordering serve as the foundation of sequential
programming.






Chapter 7

Coordinate Structures

Gmpter 6 introduced a family of iterator concepts as the interface be-
tween algorithms and objects in data structures with immutable linear shape.
This chapter goes beyond iterators to coordinate structures with more com-
plex shape. We introduce bifurcate coordinates and implement algorithms
on binary trees with the help of a machine for iterative tree traversal. Af-
ter discussing a concept schema for coordinate structures, we conclude with

algorithms for isomorphism, equivalence, and ordering.

7.1 Bifurcate Coordinates

Tterators allow us to traverse linear structures, which have a single successor
at each position. While there are data structures with an arbitrary number
of successors, in this chapter we study an important case of structures with
exactly two successors at every position, labeled left and right. In order to
define algorithms on these structures, we define the following concept:

Bifurcate Coordinate(T) £
Regular(T)
AN WeightType : Bifurcate Coordinate — Integer
/\ empty : T — bool
/\ has_left_successor : T — bool
/\ has_right_successor : T — bool
N left_successor: T — T
A right_successor : T — T
A (Vi,j € T) (left_successor(i) = j V right_successor(i) =j) = —empty(j)

113
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The WeightType type function returns a type capable of counting all
the objects in a traversal that uses a bifurcate coordinate. WeightType is
analogous to DistanceType for an iterator type.

The predicate empty is everywhere defined. If it returns true, none of the
other procedures are defined. empty is the negation of the definition-space
predicate for both has_left_successor and has_right_successor. has_left_successor
is the definition-space predicate for left_successor, and has_right_successor is
the definition-space predicate for right_successor. In other words, if a bifur-
cate coordinate is not empty, has_left_successor and has_right_successor are
defined; if either one of them returns true, the corresponding successor func-
tion is defined. With iterators, algorithms use a limit or count to indicate
the end of a range. With bifurcate coordinates, there are many positions
at which branches end. Therefore it is more natural to introduce the pred-
icates has_left_successor and has_right_successor for determining whether a
coordinate has successors.

In this book we describe algorithms on BifurcateCoordinate, where all
the operations are regular. This is different from the Iterator concept, where
the most fundamental algorithms, such as find, do not require regularity of
successor and where there are nonregular models, such as input streams.
Structures where application of left_successor and right_successor change the
shape of the underlying binary tree require a concept of WeakBifurcateCoor-
dinate, where the operations are not regular.

The shape of a structure accessed via iterators is possibly cyclic for a
weak range and is a linear segment for a counted or bounded range. In order
to discuss the shape of a structure accessed via bifurcate coordinates, we
need a notion of reachability.

A bifurcate coordinate y is a proper descendant of another coordinate x
if y is the left or right successor of x or if it is a proper descendant of the
left or right successor of x. A bifurcate coordinate y is a descendant of a
coordinate x if y = x or y is a proper descendant of x.

The descendants of x form a directed acyclic graph (DAG) if for all y in
the descendants of x, y is not its own proper descendant. In other words, no
sequence of successors of any coordinate leads back to itself. x is called the
root of the DAG of its descendants. If the descendants of x form a DAG and
are finite in number, they form a finite DAG. The height of a finite DAG is
one more than the maximum sequence of successors starting from its root,
or zero if it is empty.

A bifurcate coordinate y is left reachable from x if it is a descendant of
the left successor of x, and similarly for right reachable.

The descendants of x form a tree if they form a finite DAG and for all
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Y, z in the descendants of x, z is not both left reachable and right reachable
from y. In other words, there is a unique sequence of successors from a
coordinate to any of its descendants. The property of being a tree serves the
same purpose for the algorithms in this chapter as the properties of being a
bounded or counted range served in Chapter 6, with finiteness guaranteeing

termination:

property(C : BifurcateCoordinate)
tree : C
X +— the descendants of x form a tree

These are the recursive algorithms for computing the weight and height
of a tree:

template<typename C>
requires(BifurcateCoordinate(C))
WeightType(C) weight_recursive(C c)
{
// Precondition: tree(c)
typedef WeightType(C) N;
if (empty(c)) return N(O);
N 1(0);
N r(0);
if (has_left_successor(c))
1 = weight_recursive(left_successor(c));
if (has_right_successor(c))
r = weight_recursive(right_successor(c));

return successor(l + r);

template<typename C>

requires (BifurcateCoordinate(C))
WeightType(C) height_recursive(C c)
{

// Precondition: tree(c)

typedef WeightType(C) N;

if (empty(c)) return N(O);

N 1(0);

N r(0);

if (has_left_successor(c))
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1 = height_recursive(left_successor(c));
if (has_right_successor(c))

r = height_recursive(right_successor(c));
return successor (max(l, r));

}

Lemma 7.1 height_recursive(x) < weight_recursive(x)

height_recursive correctly computes the height of a DAG but visits each
coordinate as many times as there are paths to it; this fact means that
weight_recursive does not correctly compute the weight of a DAG. Algo-
rithms for traversing DAGs and cyclic structures require marking: a way of
remembering which coordinates have been previously visited.

There are three primary depth-first tree-traversal orders. All three fully
traverse the left descendants and then the right descendants. Preorder visits
to a coordinate occur before the traversal of its descendants; inorder visits
occur between the traversals of the left and right descendants; postorder
visits occur after traversing all descendants. We name the three visits with
the following type definition:

enum visit { pre, in, post };

We can perform any combination of the traversals with a single procedure
that takes as a parameter another procedure taking the visit together with
the coordinate:

template<typename C, typename Proc>
requires(BifurcateCoordinate(C) &&
Procedure(Proc) && Arity(Proc) == 2 &&
visit == InputType(Proc, 0) &&
C == InputType(Proc, 1))
Proc traverse_nonempty(C c, Proc proc)
{
// Precondition: tree(c) /\ —empty(c)
proc(pre, c);
if (has_left_successor(c))
proc = traverse_nonempty(left_successor(c), proc);
proc(in, c);
if (has_right_successor(c))
proc = traverse_nonempty(right_successor(c), proc);
proc(post, c);

return proc;
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7.2 Bidirectional Bifurcate Coordinates

Recursive traversal requires stack space proportional to the height of the
tree, which can be as large as the weight; this is often unacceptable for
large, unbalanced trees. Also, the interface to traverse_nonempty does not
allow concurrent traversal of multiple trees. In general, traversing more than
one tree concurrently requires a stack per tree. If we combined a coordinate
with a stack of previous coordinates, we would obtain a new coordinate
type with an additional transformation for obtaining the predecessor. (It
would be more efficient to use actions rather than transformations, to avoid
copying the stack each time.) Such a coordinate would model the concept
bidirectional bifurcate coordinate. There is a simpler and more flexible model
of this concept: trees that include a predecessor link in each node. Such
trees allow concurrent, constant-space traversals and make possible various
rebalancing algorithms. The overhead for the extra link is usually justified.

Bidirectional Bifurcate Coordinate(T) =
BifurcateCoordinate(T)
/\ has_predecessor : T — bool
A (Vi € T)—empty(i) = has_predecessor(i) is defined
/A predecessor : T — T
A (Vi € T) has_left_successor(1) =
predecessor (left_successor(i)) is defined and equals 1
A (Vi € T) has_right_successor (i) =
predecessor (right_successor(i)) is defined and equals 1
/\ (Vi € T) has_predecessor(i) =
is_left_successor (i) V is_right_successor(1i)

where is_left_successor and is_right_successor are defined as follows:

template<typename T>
requires(BidirectionalBifurcateCoordinate(T))
bool is_left_successor(T j)
{
// Precondition: has_predecessor(j)
T i = predecessor(j);

return has_left_successor(i) && left_successor(i) == j;
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template<typename T>
requires(BidirectionalBifurcateCoordinate(T))
bool is_right_successor(T j)

{

// Precondition: has_predecessor(j)

T i = predecessor(j);

return has_right_successor(i) && right_successor(i) == j;
}

Lemma 7.2 If x and y are bidirectional bifurcate coordinates,

left_successor(x) = left_successor(y) = x =y
left_successor(x) = right_successor(y) = x =

right_successor(x) = right_successor(y) = x =y
Exercise 7.1 Would the existence of a coordinate x such that
is_left_successor(x) /\ is_right_successor(x)

contradict the axioms of bidirectional bifurcate coordinates?

traverse_nonempty visits each coordinate three times, whether or not it
has successors; maintaining this invariant makes the traversal uniform. The
three visits to a coordinate always occur in the same order (pre, in, post),
so given a current coordinate and the visit just performed on it, we can
determine the next coordinate and the next state, using only the information
from the coordinate and its predecessor. These considerations lead us to an
iterative constant-space algorithm for traversing a tree with bidirectional
bifurcate coordinates. The traversal depends on a machine—a sequence of
statements used as a component of many algorithms:

template<typename C>
requires(BidirectionalBifurcateCoordinate(C))
int traverse_step(visit& v, C& c)
{
// Precondition: has_predecessor(c) Vv # post
switch (v) {
case pre:
if (has_left_successor(c)) {
c = left_successor(c); return 1;

} v = in; return 0;
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case in:
if (has_right_successor(c)) {
v = pre; c = right_successor(c); return 1;
} v = post; return 0;
case post:
if (is_left_successor(c))
v = in;

¢ = predecessor(c); return -1;

The value returned by the procedure is the change in height. An algo-
rithm based on traverse_step uses a loop that terminates when the original
coordinate is reached on the final (post) visit:

template<typename C>
requires(BidirectionalBifurcateCoordinate(C))
bool reachable(C x, C y)

{
// Precondition: tree(x)
if (empty(x)) return false;
C root = x;
visit v = pre;
do {
if (x == y) return true;
traverse_step(v, x);
} while (x !'= root || v != post);
return false;
}

Lemma 7.3 If reachable returns true, v = pre right before the return.
To compute the weight of a tree, we count the pre visits in a traversal:

template<typename C>
requires(BidirectionalBifurcateCoordinate(C))
WeightType(C) weight(C c)
{
// Precondition: tree(c)
typedef WeightType(C) N;
if (empty(c)) return N(O);
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C root = c;
visit v = pre;
N n(1); // Invariant: n is count of pre visits so far
do {
traverse_step(v, c);
if (v == pre) n = successor(n);
} while (¢ != root || v != post);

return n;

Exercise 7.2 Change weight to count in or post visits instead of pre.

To compute the height of a tree, we need to maintain the current height
and the running maximum:

template<typename C>
requires(BidirectionalBifurcateCoordinate(C))
WeightType(C) height(C c)

{
// Precondition: tree(c)
typedef WeightType(C) N;
if (empty(c)) return N(O);
C root = c;
visit v = pre;
N n(1); // Invariant: n is max of height of pre visits so far
N m(1); // Invariant: m is height of current pre wvisit
do {
m= (m - N(1)) + N(traverse_step(v, c) + 1);
n = max(n, m);
} while (¢ !'= root || v != post);
return n;
}

The extra —1 and +1 are in case WeightType is unsigned. The code
would benefit from an accumulating version of max.

We can define an iterative procedure corresponding to traverse_nonempty.
We include a test for the empty tree, since it is not executed on every
recursive call:

template<typename C, typename Proc>
requires(BidirectionalBifurcateCoordinate(C) &&
Procedure(Proc) && Arity(Proc) == 2 &&
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visit == InputType(Proc, 0) &&
C == InputType(Proc, 1))
Proc traverse(C c, Proc proc)
{
// Precondition: tree(c)
if (empty(c)) return proc;
C root = c;
visit v = pre;
proc(pre, c);
do {
traverse_step(v, c);
proc(v, c);
} while (¢ !'= root || v != post);

return proc;

Exercise 7.3 Use traverse_step and the procedures of Chapter 2 to deter-
mine whether the descendants of a bidirectional bifurcate coordinate form
a DAG.

The property readable_bounded_range for iterators says that for every
iterator in a range, source is defined. An analogous property for bifurcate
coordinates is

property(C : Readable)
requires(BifurcateCoordinate(C))
readable_tree : C
x — tree(x) A (Vy € C) reachable(x,y) = source(y) is defined

There are two approaches to extending iterator algorithms, such as find
and count, to bifurcate coordinates: implementing specialized versions or
implementing an adapter type.

Project 7.1 Implement versions of algorithms in Chapter 6 for bidirectional
bifurcate coordinates.

Project 7.2 Design an adapter type that, given a bidirectional bifurcate
coordinate type, produces an iterator type that accesses coordinates in a
traversal order (pre, in, or post) specified when an iterator is constructed.
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7.3 Coordinate Structures

So far, we have defined individual concepts, each of which specifies a set of
procedures and their semantics. Occasionally it is useful to define a concept
schema, which is a way of describing some common properties of a family
of concepts. While it is not possible to define an algorithm on a concept
schema, it is possible to describe structures of related algorithms on different
concepts belonging to the same concept schema. For example, we defined
several iterator concepts describing linear traversals and bifurcate coordi-
nate concepts describing traversal of binary trees. To allow traversal within
arbitrary data structures, we introduce a concept schema called coordinate
structures. A coordinate structure may have several interrelated coordinate
types, each with diverse traversal functions. Coordinate structures abstract
the navigational aspects of data structures, whereas composite objects, in-
troduced in Chapter 12, abstract storage management and ownership. Mul-
tiple coordinate structures can describe the same set of objects.

A concept is a coordinate structure if it consists of one or more coordi-
nate types, zero or more value types, one or more traversal functions, and
zero or more access functions. Each traversal function maps one or more
coordinate types and/or value types into a coordinate type, whereas each
access function maps one or more coordinate types and/or value types into
a value type. For example, when considered as a coordinate structure, a
readable indexed iterator has one value type and two coordinate types: the
iterator type and its distance type. The traversal functions are + (adding a
distance to an iterator) and — (giving the distance between two iterators).
There is one access function: source.

7.4 Isomorphism, Equivalence, and Ordering

Two collections of coordinates from the same coordinate structure concept
are isomorphic if they have the same shape. More formally, they are isomor-
phic if there is a one-to-one correspondence between the two collections such
that any valid application of a traversal function to coordinates from the
first collection returns the coordinate corresponding to the same traversal
function applied to the corresponding coordinates from the second collec-
tion.

Isomorphism does not depend on the values of the objects pointed to
by the coordinates: Algorithms for testing isomorphism use only traversal
functions. But isomorphism requires that the same access functions are
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defined, or not defined, for corresponding coordinates. For example, two
bounded or counted ranges are isomorphic if they have the same size. Two
weak ranges of forward iterators are isomorphic if they have the same orbit
structure, as defined in Chapter 2. Two trees are isomorphic when both
are empty; when both are nonempty, isomorphism is determined by the
following code:

template<typename CO, typename C1>
requires(BifurcateCoordinate(CO) &&
BifurcateCoordinate(C1))
bool bifurcate_isomorphic_nonempty(CO cO, Cl c1)
{
// Precondition: tree(c0) /\ tree(cl) A\ —empty(c0) A\ —empty(cl)
if (has_left_successor(c0))
if (has_left_successor(cl)) {
if ('bifurcate_isomorphic_nonempty(
left_successor(c0), left_successor(cl)))
return false;
} else return false;
else if (has_left_successor(cl)) return false;
if (has_right_successor(c0))
if (has_right_successor(cl)) {
if ('bifurcate_isomorphic_nonempty(
right_successor(c0), right_successor(cl)))
return false;
} else return false;
else if (has_right_successor(cl)) return false;

return true;

Lemma 7.4 For bidirectional bifurcate coordinates, trees are isomorphic
when simultaneous traversals take the same sequence of visits:

template<typename CO, typename C1>
requires(BidirectionalBifurcateCoordinate(CO) &&
BidirectionalBifurcateCoordinate(C1))
bool bifurcate_isomorphic(CO c0, C1 cl)
{
// Precondition: tree(c0) /\ tree(cl)
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if (empty(c0)) return empty(cl);
if (empty(cl)) return false;
CO rootO c0;

visit vO = pre;

visit vl = pre;
while (true) {
traverse_step(v0, c0);
traverse_step(vl, cl);
if (vO !'= v1) return false;
if (cO == root0 && vO == post) return true;

Chapter 6 contains algorithms for linear and bisection search, depending
on, respectively, equality and total ordering, which are part of the notion of
regularity. By inducing equality and ordering on collections of coordinates
from a coordinate structure, we can search for collections of objects rather
than for individual objects.

Two collections of coordinates from the same readable coordinate struc-
ture concept and with the same value types are equivalent under given equiv-
alence relations (one per value type) if they are isomorphic and if applying
the same access function to corresponding coordinates from the two collec-
tions returns equivalent objects. Replacing the equivalence relations with
the equalities for the value types leads to a natural definition of equality on
collections of coordinates.

Two readable bounded ranges are equivalent if they have the same size
and if corresponding iterators have equivalent values:

template<typename IO, typename I1, typename R>
requires (Readable(I0) && Iterator(IO0) &&
Readable(I1) && Iterator(Il) &&
ValueType(I0) == ValueType(Il) &&
Relation(R) && ValueType(IO) == Domain(R))
bool lexicographical_equivalent (IO fO, IO 10, I1 f1, I1 11, R r)
{
// Precondition: readable_bounded_range(f0, 10)
// Precondition: readable_bounded_range(f1,11)
// Precondition: equivalence(r)
pair<IO, I1> p = find_mismatch(£f0, 10, f1, 11, r);
return p.m0 == 10 && p.ml == 11;
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It is straightforward to implement lexicographical_equal by passing a func-
tion object implementing equality on the value type to lexicographical_equivalent:

template<typename T>

requires(Regular(T))
struct equal
{
bool operator() (const T& x, const T& y)
{
return x == y,;
}
};

template<typename IO, typename I1>
requires(Readable(I0) && Iterator(IO0) &&
Readable(I1) && Iterator(Il) &&
ValueType(I0) == ValueType(Il))
bool lexicographical_equal(IO f0, IO 10, I1 f1, I1 11)
{
return lexicographical_equivalent(f0, 10, f1, 11,
equal<ValueType(I10)>());

Two readable trees are equivalent if they are isomorphic and if corre-
sponding coordinates have equivalent values:

template<typename CO, typename Cl1l, typename R>
requires (Readable(CO) && BifurcateCoordinate(CO) &&
Readable(C1l) && BifurcateCoordinate(Cl) &&
ValueType(CO) == ValueType(Cl) &&
Relation(R) && ValueType(CO) == Domain(R))
bool bifurcate_equivalent_nonempty(CO cO, Cl c1, R r)
{
// Precondition: readable_tree(c0) /\ readable_tree(c1)
// Precondition: —empty(c0) A\ —empty(cl)
// Precondition: equivalence(r)
if ('r(source(c0), source(cl))) return false;
if (has_left_successor(c0))
if (has_left_successor(cl)) {
if ('bifurcate_equivalent_nonempty(

left_successor(c0), left_successor(cl), r))
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return false;
} else return false;
else if (has_left_successor(cl)) return false;
if (has_right_successor(c0))
if (has_right_successor(cl)) {
if (!bifurcate_equivalent_nonempty (
right_successor(c0), right_successor(cl), r))
return false;
} else return false;
else if (has_right_successor(cl)) return false;

return true;

For bidirectional bifurcate coordinates, trees are equivalent if simultane-

ous traversals take the same sequence of visits and if corresponding coordi-

nates have equivalent values:

template<typename CO, typename Cl, typename R>

requires (Readable(CO) &&
BidirectionalBifurcateCoordinate(CO) &&
Readable(C1l) &&
BidirectionalBifurcateCoordinate(Cl) &&
ValueType(CO) == ValueType(Cl) &&
Relation(R) && ValueType(CO) == Domain(R))

bool bifurcate_equivalent(CO cO, Cl cl1, R r)

{

// Precondition: readable_tree(c0) /\ readable_tree(c1)
// Precondition: equivalence(r)

if (empty(c0)) return empty(cl);

if (empty(cl)) return false;

CO rootO c0;

visit vO0 = pre;

visit vl = pre;
while (true) {
if (vO == pre && !r(source(c0), source(cl)))
return false;
traverse_step(v0, c0);
traverse_step(vl, cl);
if (vO '= v1) return false;

if (cO == root0 && v0 == post) return true;
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We can extend a weak (total) ordering to readable ranges of iterators by
using lexicographical ordering, which ignores prefixes of equivalent (equal)
values and considers a shorter range to precede a longer one:

template<typename IO, typename I1, typename R>
requires(Readable(I0) && Iterator(I0) &&
Readable(I1) && Iterator(Il) &&
ValueType(IO0) == ValueType(Il) &&
Relation(R) && ValueType(IO0) == Domain(R))
bool lexicographical_compare(IO fO, IO 10, I1 f1, I1 11, R r)
{
// Precondition: readable_bounded_range(f0, 10)
// Precondition: readable_bounded_range(f1,11)
// Precondition: weak_ordering(r)
while (true) {
if (f1 == 11) return false;
if (fO == 10) return true;
if (r(source(f0), source(fl))) return true;
if (r(source(f1), source(f0))) return false;
f0
f1

successor (£f0) ;

successor(f1);

It is straightforward to specialize this to lexicographical_less by passing

as T a function object capturing < on the value type:

template<typename T>
requires(TotallyOrdered(T))

struct less

{
bool operator() (const T& x, const T& y)
{
return x < y;
}
3

template<typename IO, typename I1>
requires(Readable(I0) && Iterator(I0) &&
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Readable(Il) && Iterator(Il) &&
ValueType(I0) == ValueType(Il))
bool lexicographical_less(IO fO, IO 10, I1 f1, I1 11)
{
return lexicographical_compare(f0, 10, f1, 11,
less<ValueType(I0)>());

Exercise 7.4 Explain why, in lexicographical_compare, the third and fourth
if statements could be interchanged, but the first and second cannot.

Exercise 7.5 Explain why we did not implement lexicographical_compare by
using find_mismatch.

We can also extend lexicographical ordering to bifurcate coordinates by
ignoring equivalent rooted subtrees and considering a coordinate without a
left successor to precede a coordinate having a left successor. If the current
values and the left subtrees do not determine the outcome, consider a co-
ordinate without a right successor to precede a coordinate having a right

successor.

Exercise 7.6 Implement bifurcate_compare_nonempty for readable bifurcate
coordinates.

The readers who complete the preceding exercise will appreciate the sim-
plicity of comparing trees based on bidirectional coordinates and iterative
traversal:

template<typename CO, typename Cl1l, typename R>
requires (Readable(CO) &&
BidirectionalBifurcateCoordinate(CO) &&
Readable(C1l) &&
BidirectionalBifurcateCoordinate(Cl) &&
ValueType(CO) == ValueType(Cl) &&
Relation(R) && ValueType(CO) == Domain(R))
bool bifurcate_compare(CO cO, C1 cl, R r)
{
// Precondition: readable_tree(c0)/\readable_tree(c1)/Aweak_ordering(r)
if (empty(cl)) return false;
if (empty(cO)) return true;

CO rootO = cO0;
visit vO = pre;
visit vl = pre;
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while (true) {

if (vO == pre) {
if (r(source(c0), source(cl))) return true;
if (r(source(cl), source(c0))) return false;

}

traverse_step(v0, c0);

traverse_step(vl, cl);

if (vO '= v1) return vO > vi;

if (cO == root0 && vO == post) return false;

We can implement bifurcate_shape_compare by passing the relation that
is always false to bifurcate_.compare. This allows us to sort a range of trees
and then use upper_bound to find an isomorphic tree in logarithmic time.

Project 7.3 Design a coordinate structure for a family of data structures,
and extend isomorphism, equivalence, and ordering to this coordinate struc-
ture.

7.5 Conclusions

Linear structures play a fundamental role in computer science, and iter