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After ten years in print, our publisher decided against further print-
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ements of Programming in two forms: a free PDF and a paperback; see
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to do so in the future. Readers may be interested in this additional book

on the same subject:

From Mathematics to Generic Programming

by Alexander A. Stepanov and Daniel E. Rose

Addison-Wesley Professional, 2014
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Preface

This book applies the deductive method to programming by affiliating

programs with the abstract mathematical theories that enable them to work.

Specification of these theories, algorithms written in terms of these theories,

and theorems and lemmas describing their properties are presented together.

The implementation of the algorithms in a real programming language is

central to the book. While the specifications, which are addressed to human

beings, should, and even must, combine rigor with appropriate informality,

the code, which is addressed to the computer, must be absolutely precise

even while being general.

As with other areas of science and engineering, the appropriate founda-

tion of programming is the deductive method. It facilitates the decompo-

sition of complex systems into components with mathematically specified

behavior. That, in turn, is a necessary precondition for designing efficient,

reliable, secure, and economical software.

The book is addressed to those who want a deeper understanding of pro-

gramming, whether they are full-time software developers, or scientists and

engineers for whom programming is an important part of their professional

activity.

The book is intended to be read from beginning to end. Only by reading

the code, proving the lemmas, and doing the exercises can readers gain

understanding of the material. In addition, we suggest several projects,

some open-ended. While the book is terse, a careful reader will eventually

see the connections between its parts and the reasons for our choice of

material. Discovering the architectural principles of the book should be the

reader’s goal.

We assume an ability to do elementary algebraic manipulations.1 We

also assume familiarity with the basic vocabulary of logic and set theory

1. For a refresher on elementary algebra, we recommend Chrystal [1904].

xi



xii Preface

at the level of undergraduate courses on discrete mathematics; Appendix A

summarizes the notation that we use. We provide definitions of a few con-

cepts of abstract algebra when they are needed to specify algorithms. We

assume programming maturity and understanding of computer architecture2

and fundamental algorithms and data structures.3

We chose C++ because it combines powerful abstraction facilities with

faithful representation of the underlying machine.4 We use a small subset

of the language and write requirements as structured comments. We hope

that readers not already familiar with C++ are able to follow the book. Ap-

pendix B specifies the subset of the language used in the book.5 Wherever

there is a difference between mathematical notation and C++, the typeset-

ting and the context determine whether the mathematical or C++ meaning

applies. While many concepts and programs in the book have parallels in

STL (the C++ Standard Template Library), the book departs from some of

the STL design decisions. The book also ignores issues that a real library,

such as STL, has to address: namespaces, visibility, inline directives, and so

on.

Chapter 1 describes values, objects, types, procedures, and concepts.

Chapters 2–5 describe algorithms on algebraic structures, such as semi-

groups and totally ordered sets. Chapters 6–11 describe algorithms on ab-

stractions of memory. Chapter 12 describes objects containing other ob-

jects. The afterword presents our reflections on the approach presented by

the book.
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Chapter 1

Foundations

Starting with a brief taxonomy of ideas, we introduce notions of value,

object, type, procedure, and concept that represent different categories of

ideas in the computer. A central notion of the book, regularity, is introduced

and elaborated. When applied to procedures, regularity means that procedures

return equal results for equal arguments. When applied to types, regularity

means that types possess the equality operator and equality-preserving copy

construction and assignment. Regularity enables us to apply equational rea-

soning (substituting equals for equals) to transform and optimize programs.

1.1 Categories of Ideas: Entity, Species,

Genus

In order to explain what objects, types, and other foundational computer

notions are, it is useful to give an overview of some categories of ideas that

correspond to these notions.

An abstract entity is an individual thing that is eternal and unchange-

able, while a concrete entity is an individual thing that comes into and out

of existence in space and time. An attribute—a correspondence between a

concrete entity and an abstract entity—describes some property, measure-

ment, or quality of the concrete entity. Identity , a primitive notion of our

perception of reality, determines the sameness of a thing changing over time.

Attributes of a concrete entity can change without affecting its identity. A

snapshot of a concrete entity is a complete collection of its attributes at

a particular point in time. Concrete entities are not only physical entities

1



2 Foundations

but also legal, financial, or political entities. Blue and 13 are examples of

abstract entities. Socrates and the United States of America are examples

of concrete entities. The color of Socrates’ eyes and the number of U.S.

states are examples of attributes.

An abstract species describes common properties of essentially equivalent

abstract entities. Examples of abstract species are natural number and color.

A concrete species describes the set of attributes of essentially equivalent

concrete entities. Examples of concrete species are man and U.S. state.

A function is a rule that associates one or more abstract entities, called

arguments, from corresponding species with an abstract entity, called the

result, from another species. Examples of functions are the successor func-

tion, which associates each natural number with the one that immediately

follows it, and the function that associates with two colors the result of

blending them.

An abstract genus describes different abstract species that are similar in

some respect. Examples of abstract genera are number and binary operator.

A concrete genus describes different concrete species similar in some respect.

Examples of concrete genera are mammal and biped.

An entity belongs to a single species, which provides the rules for its

construction or existence. An entity can belong to several genera, each of

which describes certain properties.

We show later in the chapter that objects and values represent entities,

types represent species, and concepts represent genera.

1.2 Values

Unless we know the interpretation, the only things we see in a computer are

0s and 1s. A datum is a finite sequence of 0s and 1s.

A value type is a correspondence between a species (abstract or concrete)

and a set of datums. A datum corresponding to a particular entity is called

a representation of the entity; the entity is called the interpretation of the

datum. We refer to a datum together with its interpretation as a value.

Examples of values are integers represented in 32-bit two’s complement big-

endian format and rational numbers represented as a concatenation of two

32-bit sequences, interpreted as integer numerator and denominator, repre-

sented as two’s complement big-endian values.

A datum is well formed with respect to a value type if and only if that

datum represents an abstract entity. For example, every sequence of 32 bits

is well formed when interpreted as a two’s-complement integer; an IEEE 754
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floating-point NaN (Not a Number) is not well formed when interpreted as

a real number.

A value type is properly partial if its values represent a proper subset of

the abstract entities in the corresponding species; otherwise it is total. For

example, the type int is properly partial, while the type bool is total.

A value type is uniquely represented if and only if at most one value

corresponds to each abstract entity. For example, a type representing a

truth value as a byte that interprets zero as false and nonzero as true is not

uniquely represented. A type representing an integer as a sign bit and an

unsigned magnitude does not provide a unique representation of zero. A

type representing an integer in two’s complement is uniquely represented.

A value type is ambiguous if and only if a value of the type has more

than one interpretation. The negation of ambiguous is unambiguous. For

example, a type representing a calendar year over a period longer than a

single century as two decimal digits is ambiguous.

Two values of a value type are equal if and only if they represent the

same abstract entity. They are representationally equal if and only if their

datums are identical sequences of 0s and 1s.

Lemma 1.1 If a value type is uniquely represented, equality implies repre-

sentational equality.

Lemma 1.2 If a value type is not ambiguous, representational equality

implies equality.

If a value type is uniquely represented, we implement equality by test-

ing that both sequences of 0s and 1s are the same. Otherwise we must

implement equality in such a way that preserves its consistency with the in-

terpretations of its arguments. Nonunique representations are chosen when

testing equality is done less frequently than operations generating new val-

ues and when it is possible to make generating new values faster at the cost

of making equality slower. For example, two rational numbers represented

as pairs of integers are equal if they reduce to the same lowest terms. Two

finite sets represented as unsorted sequences are equal if, after sorting and

eliminating duplicates, their corresponding elements are equal.

Sometimes, implementing true behavioral equality is too expensive or

even impossible, as in the case for a type of encodings of computable func-

tions. In these cases we must settle for the weaker representational equality:

that two values are the same sequence of 0s and 1s.

Computers implement functions on abstract entities as functions on val-

ues. While values reside in memory, a properly implemented function on
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values does not depend on particular memory addresses: It implements a

mapping from values to values.

A function defined on a value type is regular if and only if it respects

equality: Substituting an equal value for an argument gives an equal result.

Most numeric functions are regular. An example of a numeric function

that is not regular is the function that returns the numerator of a rational

number represented as a pair of integers, since 1
2 = 2

4 , but numerator( 12 ) 6=
numerator( 24 ). Regular functions allow equational reasoning: substituting

equals for equals.

A nonregular function depends on the representation, not just the inter-

pretation, of its argument. When designing the representation for a value

type, two tasks go hand in hand: implementing equality and deciding which

functions will be regular.

1.3 Objects

A memory is a set of words, each with an address and a content. The

addresses are values of a fixed size, called the address length. The contents

are values of another fixed size, called the word length. The content of an

address is obtained by a load operation. The association of a content with

an address is changed by a store operation. Examples of memories are bytes

in main memory and blocks on a disk drive.

An object is a representation of a concrete entity as a value in memory.

An object has a state that is a value of some value type. The state of an

object is changeable. Given an object corresponding to a concrete entity,

its state corresponds to a snapshot of that entity. An object owns a set of

resources, such as memory words or records in a file, to hold its state.

While the value of an object is a contiguous sequence of 0s and 1s, the

resources in which these 0s and 1s are stored are not necessarily contiguous.

It is the interpretation that gives unity to an object. For example, two

doubles may be interpreted as a single complex number even if they are not

adjacent. The resources of an object might even be in different memories.

This book, however, deals only with objects residing in a single memory

with one address space. Every object has a unique starting address, from

which all its resources can be reached.

An object type is a pattern for storing and modifying values in memory.

Corresponding to every object type is a value type describing states of ob-

jects of that type. Every object belongs to an object type. An example of an

object type is integers represented in 32-bit two’s complement little-endian
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format aligned to a 4-byte address boundary.

Values and objects play complementary roles. Values are unchanging and

are independent of any particular implementation in the computer. Objects

are changeable and have computer-specific implementations. The state of

an object at any point in time can be described by a value; this value could

in principle be written down on paper (making a snapshot) or serialized

and sent over a communication link. Describing the states of objects in

terms of values allows us to abstract from the particular implementations of

the objects when discussing equality. Functional programming deals with

values; imperative programming deals with objects.

We use values to represent entities. Since values are unchanging, they can

represent abstract entities. Sequences of values can also represent sequences

of snapshots of concrete entities. Objects hold values representing entities.

Since objects are changeable, they can represent concrete entities by taking

on a new value to represent a change in the entity. Objects can also represent

abstract entities: staying constant or taking on different approximations to

the abstract.

We use objects in the computer for the following three reasons.

1. Objects model changeable concrete entities, such as employee records

in a payroll application.

2. Objects provide a powerful way to implement functions on values,

such as a procedure implementing the square root of a floating-point

number using an iterative algorithm.

3. Computers with memory constitute the only available realization of a

universal computational device.

Some properties of value types carry through to object types. An object

is well formed if and only if its state is well formed. An object type is

properly partial if and only if its value type is properly partial; otherwise it

is total . An object type is uniquely represented if and only if its value type

is uniquely represented.

Since concrete entities have identities, objects representing them need

a corresponding notion of identity. An identity token is a unique value

expressing the identity of an object and is computed from the value of the

object and the address of its resources. Examples of identity tokens are the

address of the object, an index into an array where the object is stored,

and an employee number in a personnel record. Testing equality of identity

tokens corresponds to testing identity. During the lifetime of an application,
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a particular object could use different identity tokens as it moves either

within a data structure or from one data structure to another.

Two objects of the same type are equal if and only if their states are

equal. If two objects are equal, we say that one is a copy of the other.

Making a change to an object does not affect any copy of it.

This book uses a programming language that has no way to describe

values and value types as separate from objects and object types. So from

this point on, when we refer to types without qualification, we mean object

types.

1.4 Procedures

A procedure is a sequence of instructions that modifies the state of some

objects; it may also construct or destroy objects.

The objects with which a procedure interacts can be divided into four

kinds, corresponding to the intentions of the programmer.

1. Input/output consists of objects passed to/from a procedure directly

or indirectly through its arguments or returned result.

2. Local state consists of objects created, destroyed, and usually modified

during a single invocation of the procedure.

3. Global state consists of objects accessible to this and other procedures

across multiple invocations.

4. Own state consists of objects accessible only to this procedure (and

its affiliated procedures) but shared across multiple invocations.

An object is passed directly if it is passed as an argument or returned as

the result and is passed indirectly if it is passed via a pointer or pointerlike

object. An object is an input to a procedure if it is read, but not modified,

by the procedure. An object is an output from a procedure if it is written,

created, or destroyed by the procedure, but its initial state is not read by

the procedure. An object is an input/output of a procedure if it is modified

as well as read by the procedure.

A computational basis for a type is a finite set of procedures that enable

the construction of any other procedure on the type. A basis is efficient if

and only if any procedure implemented using it is as efficient as an equivalent

procedure written in terms of an alternative basis. For example, a basis

for unsigned k-bit integers providing only zero, equality, and the successor
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function is not efficient, since the complexity of addition in terms of successor

is exponential in k.

A basis is expressive if and only if it allows compact and convenient

definitions of procedures on the type. In particular, all the common math-

ematical operations need to be provided when they are appropriate. For

example, subtraction could be implemented using negation and addition

but should be included in an expressive basis. Similarly, negation could

be implemented using subtraction and zero but should be included in an

expressive basis.

1.5 Regular Types

There is a set of procedures whose inclusion in the computational basis of a

type lets us place objects in data structures and use algorithms to copy ob-

jects from one data structure to another. We call types having such a basis

regular, since their use guarantees regularity of behavior and, therefore, in-

teroperability.1 We derive the semantics of regular types from built-in types,

such as bool, int, and, when restricted to well-formed values, double. A

type is regular if and only if its basis includes equality, assignment, destruc-

tor, default constructor, copy constructor, total ordering,2 and underlying

type.3

Equality is a procedure that takes two objects of the same type and

returns true if and only if the object states are equal. Inequality is always

defined and returns the negation of equality. We use the following notation:

Specifications C++

Equality a = b a == b

Inequality a 6= b a != b

Assignment is a procedure that takes two objects of the same type and

makes the first object equal to the second without modifying the second.

The meaning of assignment does not depend on the initial value of the first

object. We use the following notation:

Specifications C++

Assignment a← b a = b

1. While regular types underlie the design of STL, they were first formally introduced in

Dehnert and Stepanov [2000].
2. Strictly speaking, as becomes clear in Chapter 4, it could be either total ordering or

default total ordering.
3. Underlying type is defined in Chapter 12.
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A destructor is a procedure causing the cessation of an object’s existence.

After a destructor has been called on an object, no procedure can be applied

to it, and its former memory locations and resources may be reused for other

purposes. The destructor is normally invoked implicitly. Global objects

are destroyed when the application terminates, local objects are destroyed

when the block in which they are declared is exited, and elements of a data

structure are destroyed when the data structure is destroyed.

A constructor is a procedure transforming memory locations into an

object. The possible behaviors range from doing nothing to establishing a

complex object state.

An object is in a partially formed state if it can be assigned to or de-

stroyed. For an object that is partially formed but not well formed, the

effect of any procedure other than assignment (only on the left side) and

destruction is not defined.

Lemma 1.3 A well-formed object is partially formed.

A default constructor takes no arguments and leaves the object in a

partially formed state. We use the following notation:

C++

Local object of type T T a;

Anonymous object of type T T()

A copy constructor takes an additional argument of the same type and

constructs a new object equal to it. We use the following notation:

C++

Local copy of object b T a = b;

1.6 Regular Procedures

A procedure is regular if and only if replacing its inputs with equal objects

results in equal output objects. As with value types, when defining an

object type we must make consistent choices in how to implement equality

and which procedures on the type will be regular.

Exercise 1.1 Extend the notion of regularity to input/output objects of a

procedure, that is, to objects that are modified as well as read.

While regularity is the default, there are reasons for nonregular behavior

of procedures.
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1. A procedure returns the address of an object; for example, the built-in

function addressof.

2. A procedure returns a value determined by the state of the real world,

such as the value of a clock or other device.

3. A procedure returns a value depending on own state; for example, a

pseudorandom number generator.

4. A procedure returns a representation-dependent attribute of an object,

such as the amount of reserved memory for a data structure.

A functional procedure is a regular procedure defined on regular types,

with one or more direct inputs and a single output that is returned as the

result of the procedure. The regularity of functional procedures allows two

techniques for passing inputs. When the size of the parameter is small or if

the procedure needs a copy it can mutate, we pass it by value, making a local

copy. Otherwise we pass it by constant reference. A functional procedure can

be implemented as a C++ function, function pointer, or function object.4

This is a functional procedure:

int plus_0(int a, int b)

{

return a + b;

}

This is a semantically equivalent functional procedure:

int plus_1(const int& a, const int& b)

{

return a + b;

}

This is semantically equivalent but is not a functional procedure, because

its inputs and outputs are passed indirectly:

void plus_2(int* a, int* b, int* c)

{

*c = *a + *b;

}

In plus 2, a and b are input objects, while c is an output object. The

notion of a functional procedure is a syntactic rather than semantic property:

In our terminology, plus 2 is regular but not functional.

4. C++ functions are not objects and cannot be passed as arguments; C++ function

pointers and function objects are objects and can be passed as arguments.
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The definition space for a functional procedure is that subset of values

for its inputs to which it is intended to be applied. A functional procedure

always terminates on input in its definition space; while it may terminate

for input outside its definition space, it may not return a meaningful value.

A homogeneous functional procedure is one whose input objects are all

the same type. The domain of a homogeneous functional procedure is the

type of its inputs. Rather than defining the domain of a nonhomogeneous

functional procedure as the direct product of its input types, we refer indi-

vidually to the input types of a procedure.

The codomain for a functional procedure is the type of its output. The

result space for a functional procedure is the set of all values from its

codomain returned by the procedure for inputs from its definition space.

Consider the functional procedure

int square(int n) { return n * n; }

While its domain and codomain are int, its definition space is the set

of integers whose square is representable in the type, and its result space is

the set of square integers representable in the type.

Exercise 1.2 Assuming that int is a 32-bit two’s complement type, deter-

mine the exact definition and result space.

1.7 Concepts

A procedure using a type depends on syntactic, semantic, and complexity

properties of the computational basis of the type. Syntactically it depends

on the presence of certain literals and procedures with particular names

and signatures. Its semantics depend on properties of these procedures. Its

complexity depends on the time and space complexity of these procedures.

A program remains correct if a type is replaced by a different type with

the same properties. The utility of a software component, such as a library

procedure or data structure, is increased by designing it not in terms of

concrete types but in terms of requirements on types expressed as syntactic

and semantic properties. We call a collection of requirements a concept.

Types represent species; concepts represent genera.

In order to describe concepts, we need several mechanisms dealing with

types: type attributes, type functions, and type constructors. A type at-

tribute is a mapping from a type to a value describing some characteristic

of the type. Examples of type attributes are the built-in type attribute

sizeof(T) in C++, the alignment of an object of a type, and the number
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of members in a struct. If F is a functional procedure type, Arity(F) re-

turns its number of inputs. A type function is a mapping from a type to an

affiliated type. An example of a type function is: given “pointer to T ,” the

type T . In some cases it is useful to define an indexed type function with

an additional constant integer parameter. For example, a type function re-

turning the type of the ith member of a structure type (counting from 0).

If F is a functional procedure type, the type function Codomain(F) returns

the type of the result. If F is a functional procedure type and i < Arity(F),

the indexed type function InputType(F, i) returns the type of the ith param-

eter (counting from 0).5 A type constructor is a mechanism for creating a

new type from one or more existing types. For example, pointer(T) is the

built-in type constructor that takes a type T and returns the type “pointer

to T”; struct is a built-in n-ary type constructor; a structure template is a

user-defined n-ary type constructor.

If T is an n-ary type constructor, we usually denote its application to

types T0, . . . , Tn−1 as TT0,...,Tn−1
. An important example is pair, which, when

applied to regular types T0 and T1, returns a struct type pairT0,T1 with a

memberm0 of type T0 and a memberm1 of type T1. To ensure that the type

pairT0,T1 is itself regular, equality, assignment, destructor, and constructors

are defined through memberwise extensions of the corresponding operations

on the types T0 and T1. The same technique is used for any tuple type,

such as triple. In Chapter 12 we show the implementation of pairT0,T1 and

describe how regularity is preserved by more complicated type constructors.

Somewhat more formally, a concept is a description of requirements on

one or more types stated in terms of the existence and properties of proce-

dures, type attributes, and type functions defined on the types. We say that

a concept is modeled by specific types, or that the types model the concept,

if the requirements are satisfied for these types. To assert that a concept

C is modeled by types T0, . . . , Tn−1, we write C(T0, . . . , Tn−1). Concept C ′

refines concept C if whenever C ′ is satisfied for a set of types, C is also

satisfied for those types. We say that C weakens C ′ if C ′ refines C.

A type concept is a concept defined on one type. For example, C++ de-

fines the type concept integral type, which is refined by unsigned integral type

and by signed integral type, while STL defines the type concept sequence.

We use the primitive type concepts Regular and FunctionalProcedure, cor-

responding to the informal definitions we gave earlier.

We define concepts formally by using standard mathematical notation.

To define a concept C, we write

5. Appendix B shows how to define type attributes and type functions in C++.
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C(T0, . . . , Tn−1) ,

E0

∧ E1

∧ . . .

∧ Ek−1

where , is read as “is equal to by definition,” the Ti are formal type pa-

rameters, and the Ej are concept clauses, which take one of three forms:

1. Application of a previously defined concept, indicating a subset of the

type parameters modeling it.

2. Signature of a type attribute, type function, or procedure that must

exist for any types modeling the concept. A procedure signature takes

the form f : T → T ′, where T is the domain and T ′ is the codomain. A

type function signature takes the form F : C → C ′, where the domain

and codomain are concepts.

3. Axiom expressed in terms of these type attributes, type functions, and

procedures.

We sometimes include the definition of a type attribute, type function,

or procedure following its signature in the second kind of concept clause. It

takes the form x 7→ F(x) for some expression F. In a particular model, such

a definition could be overridden with a different but consistent implemen-

tation.

For example, this concept describes a unary functional procedure:

UnaryFunction(F) ,

FunctionalProcedure(F)

∧ Arity(F) = 1

∧ Domain : UnaryFunction → Regular

F 7→ InputType(F, 0)

This concept describes a homogeneous functional procedure:

HomogeneousFunction(F) ,

FunctionalProcedure(F)

∧ Arity(F) > 0

∧ (∀i, j ∈ N)(i, j < Arity(F))⇒ (InputType(F, i) = InputType(F, j))

∧ Domain : HomogeneousFunction → Regular

F 7→ InputType(F, 0)
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Observe that

(∀F ∈ FunctionalProcedure)UnaryFunction(F)⇒ HomogeneousFunction(F)

An abstract procedure is parameterized by types and constant values,

with requirements on these parameters.6 We use function templates and

function object templates. The parameters follow the template keyword

and are introduced by typename for types and int or another integral type

for constant values. Requirements are specified via the requires clause,

whose argument is an expression built up from constant values, concrete

types, formal parameters, applications of type attributes and type functions,

equality on values and types, concepts, and logical connectives.7

Here is an example of an abstract procedure:

template<typename Op>

requires(BinaryOperation(Op))

Domain(Op) square(const Domain(Op)& x, Op op)

{

return op(x, x);

}

The domain values could be large, so we pass them by constant refer-

ence. Operations tend to be small (e.g., a function pointer or small function

object), so we pass them by value.

Concepts describe properties satisfied by all objects of a type, whereas

preconditions describe properties of particular objects. For example, a pro-

cedure might require a parameter to be a prime number. The requirement

for an integer type is specified by a concept, while primality is specified by

a precondition. The type of a function pointer expresses only its signature,

not its semantic properties. For example, a procedure might require a pa-

rameter to be a pointer to a function implementing an associative binary

operation on integers. The requirement for a binary operation on integers

is specified by a concept; associativity of a particular function is specified

by a precondition.

To define a precondition for a family of types, we need to use mathe-

matical notation, such as universal and existential quantifiers, implication,

and so on. For example, to specify the primality of an integer, we define

6. Abstract procedures appeared, in substantially the form we use them, in 1930 in van der

Waerden [1930], which was based on the lectures of Emmy Noether and Emil Artin.

George Collins and David Musser used them in the context of computer algebra in the

late 1960s and early 1970s. See, for example, Musser [1975].
7. See Appendix B for the full syntax of the requires clause.
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property(N : Integer)

prime : N

n 7→ (|n| 6= 1)∧ (∀u, v ∈ N)uv = n⇒ (|u| = 1 ∨ |v| = 1)

where the first line introduces formal type parameters and the concepts they

model, the second line names the property and gives its signature, and the

third line gives the predicate establishing whether the property holds for a

given argument.

To define regularity of a unary functional procedure, we write

property(F : UnaryFunction)

regular unary function : F

f 7→ (∀f ′ ∈ F)(∀x, x ′ ∈ Domain(F))

(f = f ′ ∧ x = x ′)⇒ (f(x) = f ′(x ′))

The definition easily extends to n-ary functions: Application of equal

functions to equal arguments gives equal results. By extension, we call an

abstract function regular if all its instantiations are regular. In this book

every procedural argument is a regular function unless otherwise stated; we

omit the precondition stating this explicitly.

Project 1.1 Extend the notions of equality, assignment, and copy construc-

tion to objects of distinct types. Think about the interpretations of the two

types and axioms that connect cross-type procedures.

1.8 Conclusions

The commonsense view of reality humans share has a representation in

the computer. By grounding the meanings of values and objects in their

interpretations, we obtain a simple, coherent view. Design decisions, such

as how to define equality, become straightforward when the correspondence

to entities is taken into account.



Chapter 2

Transformations and

Their Orbits

This chapter defines a transformation as a unary regular function from

a type to itself. Successive applications of a transformation starting from an

initial value determine an orbit of this value. Depending only on the reg-

ularity of the transformation and the finiteness of the orbit, we implement

an algorithm for determining orbit structures that can be used in different

domains. For example, it could be used to detect a cycle in a linked list or

to analyze a pseudorandom number generator. We derive an interface to

the algorithm as a set of related procedures and definitions for their argu-

ments and results. This analysis of an orbit-structure algorithm allows us

to introduce our approach to programming in the simplest possible setting.

2.1 Transformations

While there are functions from any sequence of types to any type, particular

classes of signatures commonly occur. In this book we frequently use two

such classes: homogeneous predicates and operations. Homogeneous predi-

cates are of the form T× . . .×T → bool; operations are functions of the form

T × . . .× T → T . While there are n-ary predicates and n-ary operations, we

encounter mostly unary and binary homogeneous predicates and unary and

binary operations.

A predicate is a functional procedure returning a truth value:

15
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Predicate(P) ,

FunctionalProcedure(P)

∧ Codomain(P) = bool

A homogeneous predicate is one that is also a homogeneous function:

HomogeneousPredicate(P) ,

Predicate(P)

∧ HomogeneousFunction(P)

A unary predicate is a predicate taking one parameter:

UnaryPredicate(P) ,

Predicate(P)

∧ UnaryFunction(P)

An operation is a homogeneous function whose codomain is equal to its

domain:

Operation(Op) ,

HomogeneousFunction(Op)

∧ Codomain(Op) = Domain(Op)

Examples of operations:

int abs(int x)

{

if (x < 0) return -x; else return x;

} // unary operation

double euclidean_norm(double x, double y)

{

return sqrt(x * x + y * y);

} // binary operation

double euclidean_norm(double x, double y, double z)

{

return sqrt(x * x + y * y + z * z);

} // ternary operation



2.1 Transformations 17

Lemma 2.1

euclidean norm(x,y, z) = euclidean norm(euclidean norm(x,y), z)

This lemma shows that the ternary version can be obtained from the

binary version. For reasons of efficiency, expressiveness, and, possibly, ac-

curacy, the ternary version is part of the computational basis for programs

dealing with three-dimensional space.

A procedure is partial if its definition space is a subset of the direct

product of the types of its inputs; it is total if its definition space is equal to

the direct product. We follow standard mathematical usage, where partial

function includes total function. We call partial procedures that are not

total nontotal . Implementations of some total functions are nontotal on

the computer because of the finiteness of the representation. For example,

addition on signed 32-bit integers is nontotal.

A nontotal procedure is accompanied by a precondition specifying its

definition space. To verify the correctness of a call of that procedure, we

must determine that the arguments satisfy the precondition. Sometimes,

a partial procedure is passed as a parameter to an algorithm that needs

to determine at runtime the definition space of the procedural parameter.

To deal with such cases, we define a definition-space predicate with the

same inputs as the procedure; the predicate returns true if and only if the

inputs are within the definition space of the procedure. Before a nontotal

procedure is called, either its precondition must be satisfied, or the call must

be guarded by a call of its definition-space predicate.

Exercise 2.1 Implement a definition-space predicate for addition on 32-bit

signed integers.

This chapter deals with unary operations, which we call transformations:

Transformation(F) ,

Operation(F)

∧ UnaryFunction(F)

∧ DistanceType : Transformation → Integer

We discuss DistanceType in the next section.

Transformations are self-composable: f(x), f(f(x)), f(f(f(x))), and so on.

This ability to self-compose, together with the ability to test for equality,

allows us to define interesting algorithms.
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When f is a transformation, we define its powers as follows:

fn(x) =

x if n = 0,

fn−1(f(x)) if n > 0

To implement an algorithm to compute fn(x), we need to specify the

requirement for an integer type. We study various concepts describing in-

tegers in Chapter 5. For now we rely on the intuitive understanding of

integers. Their models include signed and unsigned integral types, as well

as arbitrary-precision integers, with these operations and literals:

Specifications C++

Sum + +

Difference − -

Product · *

Quotient / /

Remainder mod %

Zero 0 I(0)

One 1 I(1)

Two 2 I(2)

where I is an integer type.

That leads to the following algorithm:

template<typename F, typename N>

requires(Transformation(F) && Integer(N))

Domain(F) power_unary(Domain(F) x, N n, F f)

{

// Precondition: n > 0 ∧ (∀i ∈ N) 0 < i 6 n⇒ fi(x) is defined

while (n != N(0)) {

n = n - N(1);

x = f(x);

}

return x;

}

2.2 Orbits

To understand the global behavior of a transformation, we examine the

structure of its orbits: elements reachable from a starting element by re-

peated applications of the transformation. y is reachable from x under a
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transformation f if for some n > 0, y = fn(x). x is cyclic under f if for

some n > 1, x = fn(x). x is terminal under f if and only if x is not in the

definition space of f. The orbit of x under a transformation f is the set of

all elements reachable from x under f.

Lemma 2.2 An orbit does not contain both a cyclic and a terminal element.

Lemma 2.3 An orbit contains at most one terminal element.

If y is reachable from x under f, the distance from x to y is the least

number of transformation steps from x to y. Obviously, distance is not

always defined.

Given a transformation type F, DistanceType(F) is an integer type large

enough to encode the maximum number of steps by any transformation f ∈ F
from one element of T = Domain(F) to another. If type T occupies k bits,

there can be as many as 2k values but only 2k − 1 steps between distinct

values. Thus if T is a fixed-size type, an unsigned integral type of the same

size is a valid distance type for any transformation on T . (Instead of using

the distance type, we allow the use of any integer type in power unary, since

the extra generality does not appear to hurt there.) It is often the case that

all transformation types over a domain have the same distance type. In

this case the type function DistanceType is defined for the domain type and

defines the corresponding type function for the transformation types.

The existence of DistanceType leads to the following procedure:

template<typename F>

requires(Transformation(F))

DistanceType(F) distance(Domain(F) x, Domain(F) y, F f)

{

// Precondition: y is reachable from x under f

typedef DistanceType(F) N;

N n(0);

while (x != y) {

x = f(x);

n = n + N(1);

}

return n;

}

Orbits have different shapes. An orbit of x under a transformation is
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Infinite

Terminating

Circular

ρ-shaped

Figure 2.1: Orbit Shapes

infinite if it has no cyclic or terminal elements

terminating if it has a terminal element

circular if x is cyclic

ρ-shaped if x is not cyclic, but its orbit contains a cyclic element
An orbit of x is finite if it is not infinite. Figure 2.1 illustrates the various

cases.

The orbit cycle is the set of cyclic elements in the orbit and is empty

for infinite and terminating orbits. The orbit handle, the complement of

the orbit cycle with respect to the orbit, is empty for a circular orbit. The

connection point is the first cyclic element, and is the first element of a

circular orbit and the first element after the handle for a ρ-shaped orbit.

The orbit size o of an orbit is the number of distinct elements in it. The

handle size h of an orbit is the number of elements in the orbit handle. The

cycle size c of an orbit is the number of elements in the orbit cycle.

Lemma 2.4 o = h+ c

Lemma 2.5 The distance from any point in an orbit to a point in a cycle

of that orbit is always defined.

Lemma 2.6 If x and y are distinct points in a cycle of size c,

c = distance(x,y, f) + distance(y, x, f)

Lemma 2.7 If x and y are points in a cycle of size c, the distance from x

to y satisfies

0 6 distance(x,y, f) < c
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2.3 Collision Point

If we observe the behavior of a transformation, without access to its defi-

nition, we cannot determine whether a particular orbit is infinite: It might

terminate or cycle back at any point. If we know that an orbit is finite, we

can use an algorithm to determine the shape of the orbit. Therefore there

is an implicit precondition of orbit finiteness for all the algorithms in this

chapter.

There is, of course, a naive algorithm that stores every element visited

and checks at every step whether the new element has been previously en-

countered. Even if we could use hashing to speed up the search, such an

algorithm still would require linear storage and would not be practical in

many applications. However, there is an algorithm that requires only a

constant amount of storage.

The following analogy helps to understand the algorithm. If a fast car

and a slow one start along a path, the fast one will catch up with the slow

one if and only if there is a cycle. If there is no cycle, the fast one will reach

the end of the path before the slow one. If there is a cycle, by the time the

slow one enters the cycle, the fast one will already be there and will catch

up eventually. Carrying our intuition from the continuous domain to the

discrete domain requires care to avoid the fast one skipping past the slow

one.1

The discrete version of the algorithm is based on looking for a point

where fast meets slow. The collision point of a transformation f and a

starting point x is the unique y such that

y = fn(x) = f2n+1(x)

and n > 0 is the smallest integer satisfying this condition. This definition

leads to an algorithm for determining the orbit structure that needs one

comparison of fast and slow per iteration. To handle partial transformations,

we pass a definition-space predicate to the algorithm:

template<typename F, typename P>

requires(Transformation(F) && UnaryPredicate(P) &&

Domain(F) == Domain(P))

Domain(F) collision_point(const Domain(F)& x, F f, P p)

{

// Precondition: p(x)⇔ f(x) is defined

1. Knuth [1997, page 7] attributes this algorithm to Robert W. Floyd.
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if (!p(x)) return x;

Domain(F) slow = x; // slow = f0(x)

Domain(F) fast = f(x); // fast = f1(x)

// n← 0 (completed iterations)

while (fast != slow) { // slow = fn(x)∧ fast = f2n+1(x)

slow = f(slow); // slow = fn+1(x)∧ fast = f2n+1(x)

if (!p(fast)) return fast;

fast = f(fast); // slow = fn+1(x)∧ fast = f2n+2(x)

if (!p(fast)) return fast;

fast = f(fast); // slow = fn+1(x)∧ fast = f2n+3(x)

// n← n+ 1

}

return fast; // slow = fn(x)∧ fast = f2n+1(x)

// Postcondition: return value is terminal point or collision point

}

We establish the correctness of collision point in three stages: (1) veri-

fying that it never applies f to an argument outside the definition space;

(2) verifying that if it terminates, the postcondition is satisfied; and (3)

verifying that it always terminates.

While f is a partial function, its use by the procedure is well defined,

since the movement of fast is guarded by a call of p. The movement of

slow is unguarded, because by the regularity of f, slow traverses the same

orbit as fast, so f is always defined when applied to slow.

The annotations show that if, after n > 0 iterations, fast becomes equal

to slow, then fast = f2n+1(x) and slow = fn(x). Moreover, n is the

smallest such integer, since we checked the condition for every i < n.

If there is no cycle, p will eventually return false because of finiteness.

If there is a cycle, slow will eventually reach the connection point (the first

element in the cycle). Consider the distance d from fast to slow at the

top of the loop when slow first enters the cycle: 0 6 d < c. If d = 0, the

procedure terminates. Otherwise the distance from fast to slow decreases

by 1 on each iteration. Therefore the procedure always terminates; when it

terminates, slow has moved a total of h+ d steps.

The following procedure determines whether an orbit is terminating:

template<typename F, typename P>

requires(Transformation(F) && UnaryPredicate(P) &&

Domain(F) == Domain(P))

bool terminating(const Domain(F)& x, F f, P p)

{
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// Precondition: p(x)⇔ f(x) is defined

return !p(collision_point(x, f, p));

}

Sometimes, we know either that the transformation is total or that the

orbit is nonterminating for a particular starting element. For these situa-

tions it is useful to have a specialized version of collision point:

template<typename F>

requires(Transformation(F))

Domain(F)

collision_point_nonterminating_orbit(const Domain(F)& x, F f)

{

Domain(F) slow = x; // slow = f0(x)

Domain(F) fast = f(x); // fast = f1(x)

// n← 0 (completed iterations)

while (fast != slow) { // slow = fn(x)∧ fast = f2n+1(x)

slow = f(slow); // slow = fn+1(x)∧ fast = f2n+1(x)

fast = f(fast); // slow = fn+1(x)∧ fast = f2n+2(x)

fast = f(fast); // slow = fn+1(x)∧ fast = f2n+3(x)

// n← n+ 1

}

return fast; // slow = fn(x)∧ fast = f2n+1(x)

// Postcondition: return value is collision point

}

In order to determine the cycle structure—handle size, connection point,

and cycle size—we need to analyze the position of the collision point.

When the procedure returns the collision point

fn(x) = f2n+1(x)

n is the number of steps taken by slow, and 2n+ 1 is the number of steps

taken by fast.

n = h+ d

where h is the handle size and 0 6 d < c is the number of steps taken by

slow inside the cycle. The number of steps taken by fast is

2n+ 1 = h+ d+ qc

where q > 0 is the number of full cycles completed by fast when it collides

with slow. Since n = h+ d,

2(h+ d) + 1 = h+ d+ qc
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Simplifying gives

qc = h+ d+ 1

Let us represent h modulo c:

h = mc+ r

with 0 6 r < c. Substitution gives

qc = mc+ r+ d+ 1

or

d = (q−m)c− r− 1

0 6 d < c implies

q−m = 1

so

d = c− r− 1

and r+ 1 steps are needed to complete the cycle.

Therefore the distance from the collision point to the connection point

is

e = r+ 1

In the case of a circular orbit h = 0, r = 0, and the distance from the

collision point to the beginning of the orbit is

e = 1

Circularity, therefore, can be checked with the following procedures:

template<typename F>

requires(Transformation(F))

bool circular_nonterminating_orbit(const Domain(F)& x, F f)

{

return x == f(collision_point_nonterminating_orbit(x, f));

}

template<typename F, typename P>

requires(Transformation(F) && UnaryPredicate(P) &&

Domain(F) == Domain(P))

bool circular(const Domain(F)& x, F f, P p)
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{

// Precondition: p(x)⇔ f(x) is defined

Domain(F) y = collision_point(x, f, p);

return p(y) && x == f(y);

}

We still don’t know the handle size h and the cycle size c. Determining

the latter is simple once the collision point is known: Traverse the cycle and

count the steps.

To see how to determine h, let us look at the position of the collision

point:

fh+d(x) = fh+c−r−1(x) = fmc+r+c−r−1(x) = f(m+1)c−1(x)

Taking h+1 steps from the collision point gets us to the point f(m+1)c+h(x),

which equals fh(x), since (m + 1)c corresponds to going around the cycle

m+ 1 times. If we simultaneously take h steps from x and h+ 1 steps from

the collision point, we meet at the connection point. In other words, the

orbits of x and 1 step past the collision point converge in exactly h steps,

which leads to the following sequence of algorithms:

template<typename F>

requires(Transformation(F))

Domain(F) convergent_point(Domain(F) x0, Domain(F) x1, F f)

{

// Precondition: (∃n ∈ DistanceType(F))n > 0 ∧ fn(x0) = f
n(x1)

while (x0 != x1) {

x0 = f(x0);

x1 = f(x1);

}

return x0;

}

template<typename F>

requires(Transformation(F))

Domain(F)

connection_point_nonterminating_orbit(const Domain(F)& x, F f)

{

return convergent_point(

x,
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f(collision_point_nonterminating_orbit(x, f)),

f);

}

template<typename F, typename P>

requires(Transformation(F) && UnaryPredicate(P) &&

Domain(F) == Domain(P))

Domain(F) connection_point(const Domain(F)& x, F f, P p)

{

// Precondition: p(x)⇔ f(x) is defined

Domain(F) y = collision_point(x, f, p);

if (!p(y)) return y;

return convergent_point(x, f(y), f);

}

Lemma 2.8 If the orbits of two elements intersect, they have the same

cyclic elements.

Exercise 2.2 Design an algorithm that determines, given a transforma-

tion and its definition-space predicate, whether the orbits of two elements

intersect.

Exercise 2.3 The precondition of convergent point ensures termination.

Implement an algorithm convergent point guarded for use when that pre-

condition is not known to hold, but there is an element in common to the

orbits of both x0 and x1.

2.4 Measuring Orbit Sizes

The natural type to use for the sizes o, h, and c of an orbit on type T would

be an integer count type large enough to count all the distinct values of

type T . If a type T occupies k bits, there can be as many as 2k values, so

a count type occupying k bits could not represent all the counts from 0 to

2k. There is a way to represent these sizes by using distance type.

An orbit could potentially contain all values of a type, in which case o

might not fit in the distance type. Depending on the shape of such an orbit,

h and c would not fit either. However, for a ρ-shaped orbit, both h and

c fit. In all cases each of these fits: o − 1 (the maximum distance in the

orbit), h−1 (the maximum distance in the handle), and c−1 (the maximum

distance in the cycle). That allows us to implement procedures returning a
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triple representing the complete structure of an orbit, where the members

of the triple are as follows:

Case m0 m1 m2

Terminating h− 1 0 terminal element

Circular 0 c− 1 x

ρ-shaped h c− 1 connection point

template<typename F>

requires(Transformation(F))

triple<DistanceType(F), DistanceType(F), Domain(F)>

orbit_structure_nonterminating_orbit(const Domain(F)& x, F f)

{

typedef DistanceType(F) N;

Domain(F) y = connection_point_nonterminating_orbit(x, f);

return triple<N, N, Domain(F)>(distance(x, y, f),

distance(f(y), y, f),

y);

}

template<typename F, typename P>

requires(Transformation(F) &&

UnaryPredicate(P) && Domain(F) == Domain(P))

triple<DistanceType(F), DistanceType(F), Domain(F)>

orbit_structure(const Domain(F)& x, F f, P p)

{

// Precondition: p(x)⇔ f(x) is defined

typedef DistanceType(F) N;

Domain(F) y = connection_point(x, f, p);

N m = distance(x, y, f);

N n(0);

if (p(y)) n = distance(f(y), y, f);

// Terminating: m = h− 1 ∧ n = 0

// Otherwise: m = h∧ n = c− 1

return triple<N, N, Domain(F)>(m, n, y);

}

Exercise 2.4 Derive formulas for the count of different operations (f, p,

equality) for the algorithms in this chapter.
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Exercise 2.5 Use orbit structure nonterminating orbit to determine the av-

erage handle size and cycle size of the pseudorandom number generators on

your platform for various seeds.

2.5 Actions

Algorithms often use a transformation f in a statement like

x = f(x);

Changing the state of an object by applying a transformation to it defines

an action on the object. There is a duality between transformations and the

corresponding actions: An action is definable in terms of a transformation,

and vice versa:

void a(T& x) { x = f(x); } // action from transformation

and

T f(T x) { a(x); return x; } // transformation from action

Despite this duality, independent implementations are sometimes more

efficient, in which case both action and transformation need to be provided.

For example, if a transformation is defined on a large object and modifies

only part of its overall state, the action could be considerably faster.

Exercise 2.6 Rewrite all the algorithms in this chapter in terms of actions.

Project 2.1 Another way to detect a cycle is to repeatedly test a sin-

gle advancing element for equality with a stored element, while replacing

the stored element at ever increasing intervals. This and other ideas are

described in Sedgewick et al. [1982], Brent [1980], and Levy [1982]. Im-

plement other algorithms for orbit analysis, compare their performance for

different applications, and develop a set of recommendations for selecting

the appropriate algorithm.

2.6 Conclusions

Abstraction allowed us to define abstract procedures that can be used in

different domains. Regularity of types and functions is essential to make the

algorithms work: fast and slow follow the same orbit because of regularity.

Developing nomenclature is essential (e.g., orbit kinds and sizes). Affiliated

types, such as distance type, need to be precisely defined.
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Associative Operations

This chapter discusses associative binary operations. Associativity al-

lows regrouping the adjacent operations. This ability to regroup leads to an

efficient algorithm for computing powers of the binary operation. Regular-

ity enables a variety of program transformations to optimize the algorithm.

We then use the algorithm to compute linear recurrences, such as Fibonacci

numbers, in logarithmic time.

3.1 Associativity

A binary operation is an operation with two arguments:

BinaryOperation(Op) ,

Operation(Op)

∧ Arity(Op) = 2

The binary operations of addition and multiplication are central to math-

ematics. Many more are used, such as min, max, conjunction, disjunction,

set union, set intersection, and so on. All these operations are associative:

property(Op : BinaryOperation)

associative : Op

op 7→ (∀a,b, c ∈ Domain(Op))op(op(a,b), c) = op(a,op(b, c))

There are, of course, nonassociative binary operations, such as subtrac-

tion and division.

29
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When a particular associative binary operation op is clear from the con-

text, we often use implied multiplicative notation by writing ab instead

of op(a,b). Because of associativity, we do not need to parenthesize an

expression involving two or more applications of op, because all the group-

ings are equivalent: (· · · (a0a1) · · · )an−1 = · · · = a0(· · · (an−2an−1) · · · ) =
a0a1 · · ·an−1. When a0 = a1 = · · · = an−1 = a, we write an: the nth

power of a.

Lemma 3.1 anam = aman = an+m (powers of the same element com-

mute)

Lemma 3.2 (an)m = anm

It is not, however, always true that (ab)n = anbn. This condition holds

only when the operation is commutative.

If f and g are transformations on the same domain, their composition,

g ◦ f, is a transformation mapping x to g(f(x)).

Lemma 3.3 The binary operation of composition is associative.

If we choose some element a of the domain of an associative operation

op and consider the expression op(a, x) as a unary operation with formal

parameter x, we can think of a as the transformation “multiplication by a.”

This justifies the use of the same notation for powers of a transformation, fn,

and powers of an element under an associative binary operation, an. This

duality allows us to use an algorithm from the previous chapter to prove an

interesting theorem about powers of an associative operation. An element

x has finite order under an associative operation if there exist integers 0 <

n < m such that xn = xm. An element x is an idempotent element under

an associative operation if x = x2.

Theorem 3.1 An element of finite order has an idempotent power (Frobe-

nius [1895]).

Proof. Assume that x is an element of finite order under an associative

operation op. Let g(z) = op(x, z). Since x is an element of finite order, its

orbit under g has a cycle. By its postcondition,

collision point(x,g) = gn(x) = g2n+1(x)

for some n > 0. Thus

gn(x) = xn+1

g2n+1(x) = x2n+2 = x2(n+1) = (xn+1)2

and xn+1 is the idempotent power of x.
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Lemma 3.4 collision point nonterminating orbit can be used in the proof.

3.2 Computing Powers

An algorithm to compute an for an associative operation op will take a,

n, and op as parameters. The type of a is the domain of op; n must be

of an integer type. Without the assumption of associativity, two algorithms

compute power from left to right and right to left, respectively:

template<typename I, typename Op>

requires(Integer(I) && BinaryOperation(Op))

Domain(Op) power_left_associated(Domain(Op) a, I n, Op op)

{

// Precondition: n > 0

if (n == I(1)) return a;

return op(power_left_associated(a, n - I(1), op), a);

}

template<typename I, typename Op>

requires(Integer(I) && BinaryOperation(Op))

Domain(Op) power_right_associated(Domain(Op) a, I n, Op op)

{

// Precondition: n > 0

if (n == I(1)) return a;

return op(a, power_right_associated(a, n - I(1), op));

}

The algorithms perform n − 1 operations. They return different results

for a nonassociative operation. Consider, for example, raising 1 to the 3rd

power with the operation of subtraction.

When both a and n are integers, and if the operation is multiplica-

tion, both algorithms give us exponentiation; if the operation is addition,

both give us multiplication. The ancient Egyptians discovered a faster mul-

tiplication algorithm that can be generalized to computing powers of any

associative operation.1

1. The original is in Robins and Shute [1987, pages 16–17]; the papyrus is from around

1650 BC but its scribe noted that it was a copy of another papyrus from around 1850

BC.
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Since associativity allows us to freely regroup operations, we have

an =


a if n = 1

(a2)n/2 if n is even

(a2)bn/2ca if n is odd

which corresponds to

template<typename I, typename Op>

requires(Integer(I) && BinaryOperation(Op))

Domain(Op) power_0(Domain(Op) a, I n, Op op)

{

// Precondition: associative(op)∧ n > 0

if (n == I(1)) return a;

if (n % I(2) == I(0))

return power_0(op(a, a), n / I(2), op);

return op(power_0(op(a, a), n / I(2), op), a);

}

Let us count the number of operations performed by power 0 for an

exponent of n. The number of recursive calls is blog2 nc. Let v be the

number of 1s in the binary representation of n. Each recursive call performs

an operation to square a. Also, v−1 of the calls perform an extra operation.

So the number of operations is

blog2 nc+ (v− 1) 6 2blog2 nc

For n = 15, blog2 nc = 3 and the number of 1s is four, so the formula gives

six operations. A different grouping gives a15 = (a3)5, where a3 takes two

operations and a5 takes three operations, for a total of five. There are also

faster groupings for other exponents, such as 23, 27, 39, and 43.2

Since power left associated does n − 1 operations and power 0 does at

most 2blog2 nc operations, it might appear that for very large n, power 0

will always be much faster. This is not always the case. For example,

if the operation is multiplication of univariate polynomials with arbitrary-

precision integer coefficients, power left associated is faster.3 Even for this

simple algorithm, we do not know how to precisely specify the complexity

requirements that determine which of the two is better.

2. For a comprehensive discussion of minimal-operation exponentiation, see Knuth [1997,

pages 465–481].
3. See McCarthy [1986].
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The ability of power 0 to handle very large exponents, say 10300, makes

it crucial for cryptography.4

3.3 Program Transformations

power 0 is a satisfactory implementation of the algorithm and is appropriate

when the cost of performing the operation is considerably larger than the

overhead of the function calls caused by recursion. In this section we derive

the iterative algorithm that performs the same number of operations as

power 0, using a sequence of program transformations that can be used in

many contexts.5 For the rest of the book, we only show final or almost-final

versions.

power 0 contains two identical recursive calls. While only one is executed

in a given invocation, it is possible to reduce the code size via common-

subexpression elimination:

template<typename I, typename Op>

requires(Integer(I) && BinaryOperation(Op))

Domain(Op) power_1(Domain(Op) a, I n, Op op)

{

// Precondition: associative(op)∧ n > 0

if (n == I(1)) return a;

Domain(Op) r = power_1(op(a, a), n / I(2), op);

if (n % I(2) != I(0)) r = op(r, a);

return r;

}

Our goal is to eliminate the recursive call. A first step is to transform the

procedure to tail-recursive form, where the procedure’s execution ends with

the recursive call. One of the techniques that allows this transformation is

accumulation-variable introduction, where the accumulation variable carries

the accumulated result between recursive calls:

template<typename I, typename Op>

requires(Integer(I) && BinaryOperation(Op))

Domain(Op) power_accumulate_0(Domain(Op) r, Domain(Op) a, I n,

Op op)

4. See the work on RSA by Rivest et al. [1978].
5. Compilers perform similar transformations only for built-in types when the semantics

and complexity of the operations are known. The concept of regularity is an assertion by

the creator of a type that programmers and compilers can safely perform such transfor-

mations.
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{

// Precondition: associative(op)∧ n > 0

if (n == I(0)) return r;

if (n % I(2) != I(0)) r = op(r, a);

return power_accumulate_0(r, op(a, a), n / I(2), op);

}

If r0, a0, and n0 are the original values of r, a, and n, this invariant holds

at every recursive call: ran = r0a
n0
0 . As an additional benefit, this version

computes not just power but also power multiplied by a coefficient. It also

handles zero as the value of the exponent. However, power accumulate 0 does

an unnecessary squaring when going from 1 to 0. That can be eliminated

by adding an extra case:

template<typename I, typename Op>

requires(Integer(I) && BinaryOperation(Op))

Domain(Op) power_accumulate_1(Domain(Op) r, Domain(Op) a, I n,

Op op)

{

// Precondition: associative(op)∧ n > 0

if (n == I(0)) return r;

if (n == I(1)) return op(r, a);

if (n % I(2) != I(0)) r = op(r, a);

return power_accumulate_1(r, op(a, a), n / I(2), op);

}

Adding the extra case results in a duplicated subexpression and in three

tests that are not independent. Analyzing the dependencies between the

tests and ordering the tests based on expected frequency gives

template<typename I, typename Op>

requires(Integer(I) && BinaryOperation(Op))

Domain(Op) power_accumulate_2(Domain(Op) r, Domain(Op) a, I n,

Op op)

{

// Precondition: associative(op)∧ n > 0

if (n % I(2) != I(0)) {

r = op(r, a);

if (n == I(1)) return r;

} else if (n == I(0)) return r;

return power_accumulate_2(r, op(a, a), n / I(2), op);

}
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A strict tail-recursive procedure is one in which all the tail-recursive calls

are done with the formal parameters of the procedure being the correspond-

ing arguments:

template<typename I, typename Op>

requires(Integer(I) && BinaryOperation(Op))

Domain(Op) power_accumulate_3(Domain(Op) r, Domain(Op) a, I n,

Op op)

{

// Precondition: associative(op)∧ n > 0

if (n % I(2) != I(0)) {

r = op(r, a);

if (n == I(1)) return r;

} else if (n == I(0)) return r;

a = op(a, a);

n = n / I(2);

return power_accumulate_3(r, a, n, op);

}

A strict tail-recursive procedure can be transformed to an iterative pro-

cedure by replacing each recursive call with a goto to the beginning of the

procedure or by using an equivalent iterative construct:

template<typename I, typename Op>

requires(Integer(I) && BinaryOperation(Op))

Domain(Op) power_accumulate_4(Domain(Op) r, Domain(Op) a, I n,

Op op)

{

// Precondition: associative(op)∧ n > 0

while (true) {

if (n % I(2) != I(0)) {

r = op(r, a);

if (n == I(1)) return r;

} else if (n == I(0)) return r;

a = op(a, a);

n = n / I(2);

}

}

The recursion invariant becomes the loop invariant .

If n > 0 initially, it would pass through 1 before becoming 0. We take

advantage of this by eliminating the test for 0 and strengthening the pre-
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condition:

template<typename I, typename Op>

requires(Integer(I) && BinaryOperation(Op))

Domain(Op) power_accumulate_positive_0(Domain(Op) r,

Domain(Op) a, I n,

Op op)

{

// Precondition: associative(op)∧ n > 0

while (true) {

if (n % I(2) != I(0)) {

r = op(r, a);

if (n == I(1)) return r;

}

a = op(a, a);

n = n / I(2);

}

}

This is useful when it is known that n > 0. While developing a compo-

nent, we often discover new interfaces.

Now we relax the precondition again:

template<typename I, typename Op>

requires(Integer(I) && BinaryOperation(Op))

Domain(Op) power_accumulate_5(Domain(Op) r, Domain(Op) a, I n,

Op op)

{

// Precondition: associative(op)∧ n > 0

if (n == I(0)) return r;

return power_accumulate_positive_0(r, a, n, op);

}

We can implement power from power accumulate by using a simple iden-

tity:

an = aan−1

The transformation is accumulation-variable elimination:

template<typename I, typename Op>

requires(Integer(I) && BinaryOperation(Op))

Domain(Op) power_2(Domain(Op) a, I n, Op op)

{
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// Precondition: associative(op)∧ n > 0

return power_accumulate_5(a, a, n - I(1), op);

}

This algorithm performs more operations than necessary. For example,

when n is 16, it performs seven operations where only four are needed.

When n is odd, this algorithm is fine. Therefore we can avoid the problem

by repeated squaring of a and halving the exponent until it becomes odd:

template<typename I, typename Op>

requires(Integer(I) && BinaryOperation(Op))

Domain(Op) power_3(Domain(Op) a, I n, Op op)

{

// Precondition: associative(op)∧ n > 0

while (n % I(2) == I(0)) {

a = op(a, a);

n = n / I(2);

}

n = n / I(2);

if (n == I(0)) return a;

return power_accumulate_positive_0(a, op(a, a), n, op);

}

Exercise 3.1 Convince yourself that the last three lines of code are correct.

3.4 Special-Case Procedures

In the final versions we used these operations:

n / I(2)

n % I(2) == I(0)

n % I(2) != I(0)

n == I(0)

n == I(1)

Both / and % are expensive. We can use shifts and masks on non-negative

values of both signed and unsigned integers.

It is frequently useful to identify commonly occuring expressions involv-

ing procedures and constants of a type by defining special-case procedures.

Often these special cases can be implemented more efficiently than the gen-

eral case and, therefore, belong to the computational basis of the type. For
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built-in types, there may exist machine instructions for the special cases.

For user-defined types, there are often even more significant opportunities

for optimizing special cases. For example, division of two arbitrary polyno-

mials is more difficult than division of a polynomial by x. Similarly, division

of two Gaussian integers (numbers of the form a + bi where a and b are

integers and i =
√
−1) is more difficult than division of a Gaussian integer

by 1 + i.

Any integer type must provide the following special-case procedures:

Integer(I) ,

successor : I→ I

n 7→ n+ 1

∧ predecessor : I→ I

n 7→ n− 1

∧ twice : I→ I

n 7→ n+ n

∧ half nonnegative : I→ I

n 7→ bn/2c, where n > 0

∧ binary scale down nonnegative : I× I→ I

(n,k) 7→ bn/2kc, where n,k > 0

∧ binary scale up nonnegative : I× I→ I

(n,k) 7→ 2kn, where n,k > 0

∧ positive : I→ bool

n 7→ n > 0

∧ negative : I→ bool

n 7→ n < 0

∧ zero : I→ bool

n 7→ n = 0

∧ one : I→ bool

n 7→ n = 1

∧ even : I→ bool

n 7→ (n mod 2) = 0

∧ odd : I→ bool

n 7→ (n mod 2) 6= 0

Exercise 3.2 Implement these procedures for C++ integral types.

Now we can give the final implementations of the power procedures by

using the special-case procedures:

template<typename I, typename Op>
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requires(Integer(I) && BinaryOperation(Op))

Domain(Op) power_accumulate_positive(Domain(Op) r,

Domain(Op) a, I n,

Op op)

{

// Precondition: associative(op)∧ positive(n)

while (true) {

if (odd(n)) {

r = op(r, a);

if (one(n)) return r;

}

a = op(a, a);

n = half_nonnegative(n);

}

}

template<typename I, typename Op>

requires(Integer(I) && BinaryOperation(Op))

Domain(Op) power_accumulate(Domain(Op) r, Domain(Op) a, I n,

Op op)

{

// Precondition: associative(op)∧ ¬negative(n)

if (zero(n)) return r;

return power_accumulate_positive(r, a, n, op);

}

template<typename I, typename Op>

requires(Integer(I) && BinaryOperation(Op))

Domain(Op) power(Domain(Op) a, I n, Op op)

{

// Precondition: associative(op)∧ positive(n)

while (even(n)) {

a = op(a, a);

n = half_nonnegative(n);

}

n = half_nonnegative(n);

if (zero(n)) return a;

return power_accumulate_positive(a, op(a, a), n, op);
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}

Since we know that an+m = anam, a0 must evaluate to the identity

element for the operation op. We can extend power to zero exponents by

passing the identity element as another parameter:6

template<typename I, typename Op>

requires(Integer(I) && BinaryOperation(Op))

Domain(Op) power(Domain(Op) a, I n, Op op, Domain(Op) id)

{

// Precondition: associative(op)∧ ¬negative(n)

if (zero(n)) return id;

return power(a, n, op);

}

Project 3.1 Floating-point multiplication and addition are not associative,

so may give different results when they are used as the operation for power

and power left associated; establish whether power or power left associated

gives a more accurate result for raising a floating-point number to an integral

power.

3.5 Parameterizing Algorithms

In power we use two different techniques for providing operations for the

abstract algorithm.

1. The associative operation is passed as a parameter. This allows power

to be used with different operations on the same type, such as multi-

plication modulo n.

2. The operations on the exponent are provided as part of the compu-

tational basis for the exponent type. We do not choose, for exam-

ple, to pass half nonnegative as a parameter to power, because we do

not know of a case in which there are competing implementations of

half nonnegative on the same type.

In general, we pass an operation as a parameter when an algorithm could

be used with different operations on the same type. When a procedure is

defined with an operation as a parameter, a suitable default should be spec-

ified whenever possible. For example, the natural default for the operation

passed to power is multiplication.

6. Another technique involves defining a function identity element such that

identity element(op) returns the identity element for op.
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Using an operator symbol or a procedure name with the same semantics

on different types is called overloading , and we say that the operator symbol

or procedure name is overloaded on the type. For example, + is used on

natural numbers, integers, rationals, polynomials, and matrices. In mathe-

matics + is always used for an associative and commutative operation, so

using + for string concatenation would be inconsistent. Similarly, when both

+ and × are present, × must distribute over +. In power, half nonnegative

is overloaded on the exponent type.

When we instantiate an abstract procedure, such as collision point or

power, we create overloaded procedures. When actual type parameters sat-

isfy the requirements, the instances of the abstract procedure have the same

semantics.

3.6 Linear Recurrences

A linear recurrence function of order k is a function f such that

f(y0, . . . ,yk−1) =

k−1∑
i=0

aiyi

where coefficients a0,ak−1 6= 0. A sequence {x0, x1, · · · } is a linear recurrence

sequence of order k if there is a linear recurrence function of order k—say,

f—and

(∀n > k) xn = f(xn−1, . . . , xn−k)

Note that indices of x decrease. Given k initial values x0, . . . , xk−1 and a

linear recurrence function of order k, we can generate a linear recurrence

sequence via a straightforward iterative algorithm. This algorithm requires

n−k+1 applications of the function to compute xn, for n > k. As we will see,

we can compute xn in O(log2 n) steps, using power.7 If f(y0, . . . ,yk−1) =∑k−1
i=0 aiyi is a linear recurrence function of order k, we can view f as

performing vector inner product:8

[
a0 · · · ak−1

]
y0
...

yk−1


If we extend the vector of coefficients to the companion matrix with 1s

on its subdiagonal, we can simultaneously compute the new value xn and

7. The first O(logn) algorithm for linear recurrences is due to Miller and Brown [1966].
8. For a review of linear algebra, see Kwak and Hong [2004]. They discuss linear recur-

rences starting on page 214.
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shift the old values xn−1, . . . , xn−k+1 to the correct positions for the next

iteration:
a0 a1 a2 · · · ak−2 ak−1

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0




xn−1

xn−2

xn−3

...

xn−k

 =


xn

xn−1

xn−2

...

xn−k+1


By the associativity of matrix multiplication, it follows that we can ob-

tain xn by multiplying the vector of the k initial values by the companion

matrix raised to the power n− k+ 1:
xn

xn−1

xn−2

...

xn−k+1

 =


a0 a1 a2 · · · ak−2 ak−1

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0



n−k+1 
xk−1

xk−2

xk−3

...

x0


Using power allows us to find xn with at most 2 log2(n−k+ 1) matrix mul-

tiplication operations. A straightforward matrix multiplication algorithm

requires k3 multiplications and k3 − k2 additions of coefficients. Therefore

the computation of xn requires no more than 2k3 log2(n − k + 1) multipli-

cations and 2(k3 − k2) log2(n − k + 1) additions of the coefficients. Recall

that k is the order of the linear recurrence and is a constant.9

We never defined the domain of the elements of a linear recurrence se-

quence. It could be integers, rationals, reals, or complex numbers: The only

requirements are the existence of associative and commutative addition, as-

sociative multiplication, and distributivity of multiplication over addition.10

The sequence fi generated by the linear recurrence function

fib(y0,y1) = y0 + y1

of order 2 with initial values f0 = 0 and f1 = 1 is called the Fibonacci

sequence.11 It is straightforward to compute the nth Fibonacci number fn

by using power with 2 × 2 matrix multiplication. We use the Fibonacci

sequence to illustrate how the k3 multiplications can be reduced for this

particular case. Let

9. Fiduccia [1985] shows how the constant factor can be reduced via modular polynomial

multiplication.
10. It could be any type that models semiring, which we define in Chapter 5.
11. Leonardo Pisano, Liber Abaci, first edition, 1202. For an English translation, see

Sigler [2002]. The sequence appears on page 404.
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F =

[
1 1

1 0

]
be the companion matrix for the linear recurrence generating the Fibonacci

sequence. We can show by induction that

Fn =

[
fn+1 fn

fn fn−1

]

Indeed:

F1 =

[
f2 f1

f1 f0

]
=

[
1 1

1 0

]
Fn+1 = FFn

=

[
1 1

1 0

][
fn+1 fn

fn fn−1

]

=

[
fn+1 + fn fn + fn−1

fn+1 fn

]
=

[
fn+2 fn+1

fn+1 fn

]

This allows us to express the matrix product of Fm and Fn as

FmFn =

[
fm+1 fm

fm fm−1

][
fn+1 fn

fn fn−1

]

=

[
fm+1fn+1 + fmfn fm+1fn + fmfn−1

fmfn+1 + fm−1fn fmfn + fm−1fn−1

]

We can represent the matrix Fn with a pair corresponding to its bottom row,

(fn, fn−1), since the top row could be computed as (fn−1 + fn, fn), which

leads to the following code:

template<typename I>

requires(Integer(I))

pair<I, I> fibonacci_matrix_multiply(const pair<I, I>& x,

const pair<I, I>& y)

{

return pair<I, I>(

x.m0 * (y.m1 + y.m0) + x.m1 * y.m0,

x.m0 * y.m0 + x.m1 * y.m1);

}
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This procedure performs only four multiplications instead of the eight

required for general 2 × 2 matrix multiplication. Since the first element of

the bottom row of Fn is fn, the following procedure computes fn:

template<typename I>

requires(Integer(I))

I fibonacci(I n)

{

// Precondition: n > 0

if (n == I(0)) return I(0);

return power(pair<I, I>(I(1), I(0)),

n,

fibonacci_matrix_multiply<I>).m0;

}

3.7 Accumulation Procedures

The previous chapter defined an action as a dual to a transformation. There

is a dual procedure for a binary operation when it is used in a statement

like

x = op(x, y);

Changing the state of an object by combining it with another object

via a binary operation defines an accumulation procedure on the object. An

accumulation procedure is definable in terms of a binary operation, and vice

versa:

void op_accumulate(T& x, const T& y) { x = op(x, y); }

// accumulation procedure from binary operation

and

T op(T x, const T& y) { op_accumulate(x, y); return x; }

// binary operation from accumulation procedure

As with actions, sometimes independent implementations are more ef-

ficient, in which case both operation and accumulation procedures need to

be provided.

Exercise 3.3 Rewrite all the algorithms in this chapter in terms of accu-

mulation procedures.
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Project 3.2 Create a library for the generation of linear recurrence se-

quences based on the results of Miller and Brown [1966] and Fiduccia [1985].

3.8 Conclusions

Algorithms are abstract when they can be used with different models sat-

isfying the same requirements, such as associativity. Code optimization

depends on equational reasoning; unless types are known to be regular, few

optimizations can be performed. Special-case procedures can make code

more efficient and even more abstract. The combination of mathematics

and abstract algorithms leads to surprising algorithms, such as logarithmic

time generation of the nth element of a linear recurrence.





Chapter 4

Linear Orderings

This chapter describes properties of binary relations, such as transitivity

and symmetry. In particular, we introduce total and weak linear orderings.

We introduce the concept of stability of functions based on linear order-

ing: preserving order present in the arguments for equivalent elements. We

generalize min and max to order-selection functions, such as the median of

three elements, and introduce a technique for managing their implementa-

tion complexity through reduction to constrained subproblems.

4.1 Classification of Relations

A relation is a predicate taking two parameters of the same type:

Relation(R) ,

HomogeneousPredicate(R)

∧ Arity(R) = 2

A relation is transitive if, whenever it holds between a and b, and be-

tween b and c, it holds between a and c:

property(R : Relation)

transitive : R

r 7→ (∀a,b, c ∈ Domain(R)) (r(a,b)∧ r(b, c)⇒ r(a, c))

Examples of transitive relations are equality, equality of the first member

of a pair, reachability in an orbit, and divisibility.

47
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A relation is strict if it never holds between an element and itself; a

relation is reflexive if it always holds between an element and itself:

property(R : Relation)

strict : R

r 7→ (∀a ∈ Domain(R))¬r(a,a)

property(R : Relation)

reflexive : R

r 7→ (∀a ∈ Domain(R)) r(a,a)

All the previous examples of transitive relations are reflexive; proper

factor is strict.

Exercise 4.1 Give an example of a relation that is neither strict nor reflex-

ive.

A relation is symmetric if, whenever it holds in one direction, it holds in

the other; a relation is asymmetric if it never holds in both directions:

property(R : Relation)

symmetric : R

r 7→ (∀a,b ∈ Domain(R)) (r(a,b)⇒ r(b,a))

property(R : Relation)

asymmetric : R

r 7→ (∀a,b ∈ Domain(R)) (r(a,b)⇒ ¬r(b,a))

An example of a symmetric transitive relation is “sibling”; an example

of an asymmetric transitive relation is “ancestor.”

Exercise 4.2 Give an example of a symmetric relation that is not transitive.

Exercise 4.3 Give an example of a symmetric relation that is not reflexive.

Given a relation r(a,b), there are derived relations with the same do-

main:

complementr(a,b)⇔ ¬r(a,b)

converser(a,b)⇔ r(b,a)

complement of converser(a,b)⇔ ¬r(b,a)

Given a symmetric relation, the only interesting derivable relation is the

complement, because the converse is equivalent to the original relation.

A relation is an equivalence if it is transitive, reflexive, and symmetric:
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property(R : Relation)

equivalence : R

r 7→ transitive(r)∧ reflexive(r)∧ symmetric(r)

Examples of equivalence relations are equality, geometric congruence,

and integer congruence modulo n.

Lemma 4.1 If r is an equivalence relation, a = b⇒ r(a,b).

An equivalence relation partitions its domain into a set of equivalence

classes: subsets containing all elements equivalent to a given element. We

can often implement an equivalence relation by defining a key function, a

function that returns a unique value for all the elements in each equiva-

lence class. Applying equality to the results of the key function determines

equivalence:

property(F : UnaryFunction,R : Relation)

requires(Domain(F) = Domain(R))

key function : F× R
(f, r) 7→ (∀a,b ∈ Domain(F)) (r(a,b)⇔ f(a) = f(b))

Lemma 4.2 key function(f, r)⇒ equivalence(r)

4.2 Total and Weak Orderings

A relation is a total ordering if it is transitive and obeys the trichotomy law ,

whereby for every pair of elements, exactly one of the following holds: the

relation, its converse, or equality:

property(R : Relation)

total ordering : R

r 7→ transitive(r)∧

(∀a,b ∈ Domain(R)) exactly one of the following holds:

r(a,b), r(b,a), or a = b

A relation is a weak ordering if it is transitive and there is an equiva-

lence relation on the same domain such that the original relation obeys the

weak-trichotomy law , whereby for every pair of elements, exactly one of the

following holds: the relation, its converse, or the equivalence:

property(R : Relation,E : Relation) requires(Domain(R) = Domain(E))

weak ordering : R
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r 7→ transitive(r)∧ (∃e ∈ E) equivalence(e)∧

(∀a,b ∈ Domain(R)) exactly one of the following holds:

r(a,b), r(b,a), or e(a,b)

Given a relation r, the relation ¬r(a,b)∧¬r(b,a) is called the symmetric

complement of r.

Lemma 4.3 The symmetric complement of a weak ordering is an equiva-

lence relation.

Examples of a weak ordering are pairs ordered by their first members

and employees ordered by salary.

Lemma 4.4 A total ordering is a weak ordering.

Lemma 4.5 A weak ordering is asymmetric.

Lemma 4.6 A weak ordering is strict.

A key function f on a set T , together with a total ordering r on the

codomain of f, define a weak ordering r̃(x,y)⇔ r(f(x), f(y)).

We refer to total and weak orderings as linear orderings because of their

respective trichotomy laws.

4.3 Order Selection

Given a weak ordering r and two objects a and b from r’s domain, it makes

sense to ask which is the minimum. It is obvious how to define the minimum

when r or its converse holds between a and b but is not so when they are

equivalent. A similar problem arises if we ask which is the maximum.

A property for dealing with this problem is known as stability . Infor-

mally, an algorithm is stable if it respects the original order of equivalent

objects. So if we think of minimum and maximum as selecting, respectively,

the smallest and second smallest from a list of two arguments, stability re-

quires that when called with equivalent elements, minimum should return

the first and maximum the second.1

We can generalize minimum and maximum to (j,k)-order selection, where

k > 0 indicates the number of arguments, and 0 6 j < k indicates that the

jth smallest is to be selected. To formalize our notion of stability, assume

that each of the k arguments is associated with a unique natural number

called its stability index . Given the original weak ordering r, we define the

1. In later chapters we extend the notion of stability to other categories of algorithms.



4.3 Order Selection 51

strengthened relation r̂ on (object, stability index) pairs:

r̂((a, ia), (b, ib))⇔ r(a,b)∨ (¬r(b,a)∧ ia < ib)

If we implement an order-selection algorithm in terms of r̂, there are no

ambigous cases caused by equivalent arguments. The natural default for

the stability index of an argument is its ordinal position in the argument

list.

While the strengthened relation r̂ gives us a powerful tool for reasoning

about stability, it is straightforward to define simple order-selection proce-

dures without making the stability indices explicit. This implementation of

minimum returns a when a and b are equivalent, satisfying our definition

of stability:2

template<typename R>

requires(Relation(R))

const Domain(R)& select_0_2(const Domain(R)& a,

const Domain(R)& b, R r)

{

// Precondition: weak ordering(r)

if (r(b, a)) return b;

return a;

}

Similarly, this implementation of maximum returns b when a and b are

equivalent, again satisfying our definition of stability:3

template<typename R>

requires(Relation(R))

const Domain(R)& select_1_2(const Domain(R)& a,

const Domain(R)& b, R r)

{

// Precondition: weak ordering(r)

if (r(b, a)) return a;

return b;

}

For the remainder of this chapter, the precondition weak ordering(r) is

implied.

While it is useful to have other order-selection procedures for k argu-

ments, the difficulty of writing such an order-selection procedure grows

2. We explain our naming convention later in this section.
3. STL incorrectly requires that max(a,b) returns a when a and b are equivalent.
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quickly with k, and there are many different procedures we might have

a need for. A technique we call reduction to constrained subproblems ad-

dresses both issues. We develop a family of procedures that assume a certain

amount of information about the relative ordering of their arguments.

Naming these procedures systematically is essential. Each name begins

with select j k, where 0 6 j < k, to indicate selection of the jth element

from k arguments according to the given ordering. We append a sequence

of letters to indicate a precondition on the ordering of parameters, expressed

as increasing chains. For example, a suffix of ab means that the first two

parameters are in order, and abd means that the first, second, and fourth

parameters are in order. More than one such suffix appears when there are

preconditions on different chains of parameters.

For example, it is straightforward to implement minimum and maximum

for three elements:

template<typename R>

requires(Relation(R))

const Domain(R)& select_0_3(const Domain(R)& a,

const Domain(R)& b,

const Domain(R)& c, R r)

{

return select_0_2(select_0_2(a, b, r), c, r);

}

template<typename R>

requires(Relation(R))

const Domain(R)& select_2_3(const Domain(R)& a,

const Domain(R)& b,

const Domain(R)& c, R r)

{

return select_1_2(select_1_2(a, b, r), c, r);

}

It is easy to find the median of three elements if we know that the first

two elements are in increasing order:

template<typename R>

requires(Relation(R))

const Domain(R)& select_1_3_ab(const Domain(R)& a,

const Domain(R)& b,

const Domain(R)& c, R r)
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{

if (!r(c, b)) return b; // a, b, c are sorted

return select_1_2(a, c, r); // b is not the median

}

Establishing the precondition for select 1 3 ab requires only one com-

parison. Because the parameters are passed by constant reference, no data

movement takes place:

template<typename R>

requires(Relation(R))

const Domain(R)& select_1_3(const Domain(R)& a,

const Domain(R)& b,

const Domain(R)& c, R r)

{

if (r(b, a)) return select_1_3_ab(b, a, c, r);

return select_1_3_ab(a, b, c, r);

}

In the worst case, select 1 3 does three comparisons. The function does

two comparisons only when c is the maximum of a, b, c, and since it happens

in one-third of the cases, the average number of comparisons is 2 2
3 , assuming

a uniform distribution of inputs.

Finding the second smallest of n elements requires at least n+dlog2 ne−2

comparisons.4 In particular, finding the second of four requires four com-

parisons.

It is easy to select the second of four if we know that the first pair of

arguments and the second pair of arguments are each in increasing order:

template<typename R>

requires(Relation(R))

const Domain(R)& select_1_4_ab_cd(const Domain(R)& a,

const Domain(R)& b,

const Domain(R)& c,

const Domain(R)& d, R r)

{

if (r(c, a)) return select_0_2(a, d, r);

return select_0_2(b, c, r);

}

4. This result was conjectured by Jozef Schreier and proved by Sergei Kislitsyn [Knuth

1998, Theorem S, page 209].
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The precondition for select 1 4 ab cd can be established with one com-

parison if we already know that the first pair of arguments are in increasing

order:

template<typename R>

requires(Relation(R))

const Domain(R)& select_1_4_ab(const Domain(R)& a,

const Domain(R)& b,

const Domain(R)& c,

const Domain(R)& d, R r)

{

if (r(d, c)) return select_1_4_ab_cd(a, b, d, c, r);

return select_1_4_ab_cd(a, b, c, d, r);

}

The precondition for select 1 4 ab can be established with one compari-

son:

template<typename R>

requires(Relation(R))

const Domain(R)& select_1_4(const Domain(R)& a,

const Domain(R)& b,

const Domain(R)& c,

const Domain(R)& d, R r)

{

if (r(b, a)) return select_1_4_ab(b, a, c, d, r);

return select_1_4_ab(a, b, c, d, r);

}

Exercise 4.4 Implement select 2 4.

Maintaining stability of order-selection networks up through order 4 has

not been too difficult. But with order 5, situations arise in which the pro-

cedure corresponding to a constrained subproblem is called with arguments

out of order from the original caller, which violates stability. A systematic

way to deal with such situations is to pass the stability indices along with

the actual parameters and to use the strengthened relation r̂. We avoid

extra runtime cost by using integer template parameters.

We name the stability indices ia, ib, . . . , corresponding to the param-

eters a, b, and so on. The strengthened relation r̂ is obtained by using

the function object template compare strict or reflexive, which takes a bool

template parameter that, if true, means that the stability indices of its ar-

guments are in increasing order:
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template<bool strict, typename R>

requires(Relation(R))

struct compare_strict_or_reflexive;

When we construct an instance of compare strict or reflexive, we supply

the appropriate Boolean template argument:

template<int ia, int ib, typename R>

requires(Relation(R))

const Domain(R)& select_0_2(const Domain(R)& a,

const Domain(R)& b, R r)

{

compare_strict_or_reflexive<(ia < ib), R> cmp;

if (cmp(b, a, r)) return b;

return a;

}

We specialize compare strict or reflexive for the two cases: (1) stability

indices in increasing order, in which case we use the original strict relation

r; and (2) decreasing order, in which case we use the corresponding reflexive

version of r:

template<typename R>

requires(Relation(R))

struct compare_strict_or_reflexive<true, R> // strict

{

bool operator()(const Domain(R)& a,

const Domain(R)& b, R r)

{

return r(a, b);

}

};

template<typename R>

requires(Relation(R))

struct compare_strict_or_reflexive<false, R> // reflexive

{

bool operator()(const Domain(R)& a,

const Domain(R)& b, R r)

{
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return !r(b, a); // complement of converser(a,b)

}

};

When an order-selection procedure with stability indices calls another

such procedure, the stability indices corresponding to the parameters, in the

same order as they appear in the call, are passed:

template<int ia, int ib, int ic, int id, typename R>

requires(Relation(R))

const Domain(R)& select_1_4_ab_cd(const Domain(R)& a,

const Domain(R)& b,

const Domain(R)& c,

const Domain(R)& d, R r)

{

compare_strict_or_reflexive<(ia < ic), R> cmp;

if (cmp(c, a, r)) return

select_0_2<ia,id>(a, d, r);

return

select_0_2<ib,ic>(b, c, r);

}

template<int ia, int ib, int ic, int id, typename R>

requires(Relation(R))

const Domain(R)& select_1_4_ab(const Domain(R)& a,

const Domain(R)& b,

const Domain(R)& c,

const Domain(R)& d, R r)

{

compare_strict_or_reflexive<(ic < id), R> cmp;

if (cmp(d, c, r)) return

select_1_4_ab_cd<ia,ib,id,ic>(a, b, d, c, r);

return

select_1_4_ab_cd<ia,ib,ic,id>(a, b, c, d, r);

}

template<int ia, int ib, int ic, int id, typename R>

requires(Relation(R))

const Domain(R)& select_1_4(const Domain(R)& a,
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const Domain(R)& b,

const Domain(R)& c,

const Domain(R)& d, R r)

{

compare_strict_or_reflexive<(ia < ib), R> cmp;

if (cmp(b, a, r)) return

select_1_4_ab<ib,ia,ic,id>(b, a, c, d, r);

return

select_1_4_ab<ia,ib,ic,id>(a, b, c, d, r);

}

Now we are ready to implement order 5 selections:

template<int ia, int ib, int ic, int id, int ie, typename R>

requires(Relation(R))

const Domain(R)& select_2_5_ab_cd(const Domain(R)& a,

const Domain(R)& b,

const Domain(R)& c,

const Domain(R)& d,

const Domain(R)& e, R r)

{

compare_strict_or_reflexive<(ia < ic), R> cmp;

if (cmp(c, a, r)) return

select_1_4_ab<ia,ib,id,ie>(a, b, d, e, r);

return

select_1_4_ab<ic,id,ib,ie>(c, d, b, e, r);

}

template<int ia, int ib, int ic, int id, int ie, typename R>

requires(Relation(R))

const Domain(R)& select_2_5_ab(const Domain(R)& a,

const Domain(R)& b,

const Domain(R)& c,

const Domain(R)& d,

const Domain(R)& e, R r)

{

compare_strict_or_reflexive<(ic < id), R> cmp;

if (cmp(d, c, r)) return

select_2_5_ab_cd<ia,ib,id,ic,ie>(
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a, b, d, c, e, r);

return

select_2_5_ab_cd<ia,ib,ic,id,ie>(

a, b, c, d, e, r);

}

template<int ia, int ib, int ic, int id, int ie, typename R>

requires(Relation(R))

const Domain(R)& select_2_5(const Domain(R)& a,

const Domain(R)& b,

const Domain(R)& c,

const Domain(R)& d,

const Domain(R)& e, R r)

{

compare_strict_or_reflexive<(ia < ib), R> cmp;

if (cmp(b, a, r)) return

select_2_5_ab<ib,ia,ic,id,ie>(b, a, c, d, e, r);

return

select_2_5_ab<ia,ib,ic,id,ie>(a, b, c, d, e, r);

}

Lemma 4.7 select 2 5 performs six comparisons.

Exercise 4.5 Find an algorithm for median of 5 that does slightly fewer

comparisons on average.

We can wrap an order-selection procedure with an outer procedure that

supplies, as the stability indices, any strictly increasing series of integer

constants; by convention, we use successive integers starting with 0:

template<typename R>

requires(Relation(R))

const Domain(R)& median_5(const Domain(R)& a,

const Domain(R)& b,

const Domain(R)& c,

const Domain(R)& d,

const Domain(R)& e, R r)

{

return select_2_5<0,1,2,3,4>(a, b, c, d, e, r);

}
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Exercise 4.6 Prove the stability of every order-selection procedure in this

section.

Exercise 4.7 Verify the correctness and stability of every order-selection

procedure in this section by exhaustive testing.

Project 4.1 Design a set of necessary and sufficient conditions preserving

stability under composition of order-selection procedures.

Project 4.2 Create a library of minimum-comparison procedures for stable

sorting and merging.5 Minimize not only the number of comparisons but

also the number of data movements.

4.4 Natural Total Ordering

There is a unique equality on a type because equality of values of the type

means that those values represent the same entity. Often there is no unique

natural total ordering on a type. For a concrete species, there are often many

total and weak orderings, without any of them playing a special role. For

an abstract species, there may be one special total ordering that respects

its fundamental operations. Such an ordering is called the natural total

ordering and is denoted by the symbol <, as follows:

TotallyOrdered(T) ,

Regular(T)

∧ <: T × T → bool

∧ total ordering(<)

For example, the natural total ordering on integers respects fundamental

operations:

a < successor(a)

a < b⇒ successor(a) < successor(b)

a < b⇒ a+ c < b+ c

a < b∧ 0 < c⇒ ca < cb

Sometimes, a type does not have a natural total ordering. For example,

complex numbers and employee records do not have natural total orderings.

We require regular types to provide a default total ordering (sometimes ab-

breviated to default ordering) to enable logarithmic searching. An example

5. See Knuth [1998, Section 5.3: Optimum Sorting].
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of default total ordering where no natural total ordering exists is lexico-

graphical ordering for complex numbers. When the natural total ordering

exists, it coincides with the default ordering. We use the following notation:

Specifications C++

Default ordering for T lessT less<T>

4.5 Clusters of Derived Procedures

Some procedures naturally come in clusters. If some procedures in a cluster

are defined, the definitions of the others naturally follow. The complement

of equality, inequality, is defined whenever equality is defined; the operators

= and 6= must be defined consistently. For every totally ordered type, all

four operators <, >, 6, and > must be defined together in such a way that

the following hold:

a > b⇔ b < a

a 6 b⇔ ¬(b < a)

a > b⇔ ¬(a < b)

4.6 Extending Order-Selection Procedures

The order-selection procedures in this chapter do not return an object that

can be mutated, because they work with constant references. It is useful

and straightforward to have versions that return a mutable object, so that

they could be used on the left side of an assignment or as the mutable

argument to an action or accumulation procedure. An overloaded mutable

version of an order-selection procedure is implemented by removing from

the nonmutable version the const from each parameter type and the result

type. For example, our version of select 0 2 is supplemented with

template<typename R>

requires(Relation(R))

Domain(R)& select_0_2(Domain(R)& a, Domain(R)& b, R r)

{

if (r(b, a)) return b;

return a;

}

In addition, a library should provide versions for totally ordered types

(with <), since it is a common case. This means that there are four versions

of each procedure.
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The trichotomy and weak-trichotomy laws satisfied by total and weak

ordering suggest that instead of a two-valued relation, we could use a three-

valued comparison procedure, since, in some situations, this would avoid an

additional procedure call.

Exercise 4.8 Rewrite the algorithms in this chapter using three-valued

comparison.

4.7 Conclusions

The axioms of total and weak ordering provide the interface to connect

specific orderings with general-purpose algorithms. Systematic solutions to

small problems lead to easy decomposition of large problems. There are

clusters of procedures with interrelated semantics.





Chapter 5

Ordered Algebraic

Structures

This chapter presents a hierarchy of concepts from abstract algebra,

starting with semigroups and ending with rings and modules. We then com-

bine algebraic concepts with the notion of total ordering. When ordered

algebraic structures are Archimedean, we can define an efficient algorithm

for finding quotient and remainder. Quotient and remainder in turn lead to

a generalized version of Euclid’s algorithm for the greatest common divisor.

We briefly treat concept-related logical notions, such as consistency and in-

dependence. We conclude with a discussion of computer integer arithmetic.

5.1 Basic Algebraic Structures

An element is called an identity element of a binary operation if, when com-

bined with any other element as the first or second argument, the operation

returns the other element:

property(T : Regular ,Op : BinaryOperation)

requires(T = Domain(Op))

identity element : T ×Op
(e,op) 7→ (∀a ∈ T)op(a, e) = op(e,a) = a

Lemma 5.1 An identity element is unique:

identity element(e,op)∧ identity element(e ′,op)⇒ e = e ′
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The empty string is the identity element of string concatenation. The

matrix
(
1 0
0 1

)
is the multiplicative identity of 2 × 2 matrices, while

(
0 0
0 0

)
is

their additive identity.

A transformation is called an inverse operation of a binary operation

with respect to a given element (usually the identity element of the binary

operation) if it satisfies the following:

property(F : Transformation, T : Regular ,Op : BinaryOperation)

requires(Domain(F) = T = Domain(Op))

inverse operation : F× T ×Op
(inv, e,op) 7→ (∀a ∈ T)op(a, inv(a)) = op(inv(a),a) = e

Lemma 5.2 f(n) = n3 is the multiplicative inverse for the multiplication

of non-zero remainders modulo 5.

A binary operation is commutative if its result is the same when its

arguments are interchanged:

property(Op : BinaryOperation)

commutative : Op

op 7→ (∀a,b ∈ Domain(Op))op(a,b) = op(b,a)

Composition of transformations is associative but not commutative.

A set with an associative operation is called a semigroup. Since, as we

remarked in Chapter 3, + is always used to denote an associative, commu-

tative operation, a type with + is called an additive semigroup:

AdditiveSemigroup(T) ,

Regular(T)

∧ + : T × T → T

∧ associative(+)

∧ commutative(+)

Multiplication is sometimes not commutative. Consider, for example,

matrix multiplication.

MultiplicativeSemigroup(T) ,

Regular(T)

∧ · : T × T → T

∧ associative(·)
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We use the following notation:

Specifications C++

Multiplication · *

A semigroup with an identity element is called a monoid . The additive

identity element is denoted by 0, which leads to the definition of an additive

monoid:

AdditiveMonoid(T) ,

AdditiveSemigroup(T)

∧ 0 ∈ T
∧ identity element(0,+)

We use the following notation:

Specifications C++

Additive identity 0 T(0)

Non-negative reals are an additive monoid, as are matrices with natural

numbers as their coefficients.

The multiplicative identity element is denoted by 1, which leads to the

definition of a multiplicative monoid:

MultiplicativeMonoid(T) ,

MultiplicativeSemigroup(T)

∧ 1 ∈ T
∧ identity element(1, ·)

We use the following notation:

Specifications C++

Multiplicative identity 1 T(1)

Matrices with integer coefficients are a multiplicative monoid.

A monoid with an inverse operation is called a group. If an additive

monoid has an inverse, it is denoted by unary −, and there is a derived

operation called subtraction, denoted by binary −. That leads to the

definition of an additive group:

AdditiveGroup(T) ,

AdditiveMonoid(T)

∧ − : T → T

∧ inverse operation(unary −, 0,+)

∧ − : T × T → T

(a,b) 7→ a+ (−b)
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Matrices with integer coefficients are an additive group.

Lemma 5.3 In an additive group, −0 = 0.

Just as there is a concept of additive group, there is a corresponding

concept of multiplicative group. In this concept the inverse is called multi-

plicative inverse, and there is a derived operation called division, denoted

by binary /:

MultiplicativeGroup(T) ,

MultiplicativeMonoid(T)

∧ multiplicative inverse : T → T

∧ inverse operation(multiplicative inverse, 1, ·)
∧ / : T × T → T

(a,b) 7→ a ·multiplicative inverse(b)

multiplicative inverse(x) is written as x−1.

The set {cos θ + i sin θ} of complex numbers on the unit circle is a com-

mutative multiplicative group. A unimodular group GLn(Z) (n×n matrices

with integer coefficients with determinant equal to ±1) is a noncommutative

multiplicative group.

Two concepts can be combined on the same type with the help of axioms

connecting their operations. When both + and · are present on a type, they

are interrelated with axioms defining a semiring:

Semiring(T) ,

AdditiveMonoid(T)

∧ MultiplicativeMonoid(T)

∧ 0 6= 1

∧ (∀a ∈ T) 0 · a = a · 0 = 0

∧ (∀a,b, c ∈ T)
a · (b+ c) = a · b+ a · c
(b+ c) · a = b · a+ c · a

The axiom about multiplication by 0 is called the annihilation property .

The final axiom connecting + and · is called distributivity.

Matrices with non-negative integer coefficients constitute a semiring.

CommutativeSemiring(T) ,

Semiring(T)

∧ commutative(·)

Non-negative integers constitute a commutative semiring.
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Ring(T) ,

AdditiveGroup(T)

∧ Semiring(T)

Matrices with integer coefficients constitute a ring.

CommutativeRing(T) ,

AdditiveGroup(T)

∧ CommutativeSemiring(T)

Integers constitute a commutative ring; polynomials with integer coeffi-

cients constitute a commutative ring.

A relational concept is a concept defined on two types. Semimodule is

a relational concept that connects an additive monoid and a commutative

ring:

Semimodule(T ,S) ,

AdditiveMonoid(T)

∧ CommutativeSemiring(S)

∧ · : S× T → T

∧ (∀α,β ∈ S)(∀a,b ∈ T)
α · (β · a) = (α · β) · a
(α+ β) · a = α · a+ β · a
α · (a+ b) = α · a+ α · b

1 · a = a

If Semimodule(T ,S), we say that T is a semimodule over S. We borrow

terminology from vector spaces and call elements of T vectors and elements

of S scalars. For example, polynomials with non-negative integer coefficients

constitute a semimodule over non-negative integers.

Theorem 5.1 AdditiveMonoid(T)⇒ Semimodule(T ,N), where scalar mul-

tiplication is defined as n · x = x+ · · ·+ x︸ ︷︷ ︸
n times

.

Proof. It follows trivially from the definition of scalar multiplication to-

gether with associativity and commutativity of the monoid operation. For

example,

n · a+ n · b = (a+ · · ·+ a) + (b+ · · ·+ b)
= (a+ b) + · · ·+ (a+ b)

= n · (a+ b)
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Using power from Chapter 3 allows us to implement multiplication by

an integer in log2 n steps.

Strengthening the requirements by replacing the additive monoid with

an additive group and replacing the semiring with a ring transforms a semi-

module into a module:

Module(T ,S) ,

Semimodule(T ,S)

∧ AdditiveGroup(T)

∧ Ring(S)

Lemma 5.4 Every additive group is a module over integers with an appro-

priately defined scalar multiplication.

Computer types are often partial models of concepts. A model is called

partial when the operations satisfy the axioms where they are defined but are

not everywhere defined. For example, the result of concatenation of strings

may not be representable, because of memory limitations, but concatenation

is associative whenever it is defined.

5.2 Ordered Algebraic Structures

When a total ordering is defined on the elements of a structure in such a

way that the ordering is consistent with the structure’s algebraic properties,

it is the natural total ordering for the structure:

OrderedAdditiveSemigroup(T) ,

AdditiveSemigroup(T)

∧ TotallyOrdered(T)

∧ (∀a,b, c ∈ T)a < b⇒ a+ c < b+ c

OrderedAdditiveMonoid(T) ,

OrderedAdditiveSemigroup(T)

∧ AdditiveMonoid(T)

OrderedAdditiveGroup(T) ,

OrderedAdditiveMonoid(T)

∧ AdditiveGroup(T)



5.3 Remainder 69

Lemma 5.5 In an ordered additive semigroup, a < b ∧ c < d ⇒ a + c <

b+ d.

Lemma 5.6 In an ordered additive monoid viewed as a semimodule over

natural numbers, a > 0 ∧ n > 0⇒ na > 0.

Lemma 5.7 In an ordered additive group, a < b⇒ −b < −a.

Total ordering and negation allow us to define absolute value:

template<typename T>

requires(OrderedAdditiveGroup(T))

T abs(const T& a)

{

if (a < T(0)) return -a;

else return a;

}

The following lemma captures an important property of abs.

Lemma 5.8 In an ordered additive group, a < 0⇒ 0 < −a.

We use the notation |a| for the absolute value of a. Absolute value

satisfies the following properties.

Lemma 5.9

|a− b| = |b− a|

|a+ b| 6 |a|+ |b|

|a− b| > |a|− |b|

|a| = 0⇒ a = 0

a 6= 0⇒ |a| > 0

5.3 Remainder

We saw that repeated addition in an additive monoid induces multiplication

by a non-negative integer. In an additive group, this algorithm can be

inverted, obtaining division by repeated subtraction on elements of the form

a = nb, where b divides a. To extend this to division with remainder for

an arbitrary pair of elements, we need ordering. The ordering allows the

algorithm to terminate when it is no longer possible to subtract. As we shall

see, it also enables an algorithm to take a logarithmic number of steps. The

subtraction operation does not need to be defined everywhere; it is sufficient
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to have a partial subtraction called cancellation, where a−b is only defined

when b does not exceed a:

CancellableMonoid(T) ,

OrderedAdditiveMonoid(T)

∧ − : T × T → T

∧ (∀a,b ∈ T)b 6 a⇒ a− b is defined ∧ (a− b) + b = a

We write the axiom as (a − b) + b = a instead of (a + b) − b = a to

avoid overflow in partial models of CancellableMonoid:

template<typename T>

requires(CancellableMonoid(T))

T slow_remainder(T a, T b)

{

// Precondition: a > 0 ∧ b > 0

while (b <= a) a = a - b;

return a;

}

The concept CancellableMonoid is not strong enough to prove termina-

tion of slow remainder. For example, slow remainder does not always termi-

nate for polynomials with integer coefficients, ordered lexicographically.

Exercise 5.1 Give an example of two polynomials with integer coefficients

for which the algorithm does not terminate.

To ensure that the algorithm terminates, we need another property,

called the Axiom of Archimedes:1

ArchimedeanMonoid(T) ,

CancellableMonoid(T)

∧ (∀a,b ∈ T) (a > 0 ∧ b > 0)⇒ slow remainder(a,b) terminates

∧ QuotientType : ArchimedeanMonoid → Integer

Observe that termination of an algorithm is a legitimate axiom; in this

case it is equivalent to

(∃n ∈ QuotientType(T))a− n · b < b

1. “. . . the excess by which the greater of (two) unequal areas exceeds the less can, by

being added to itself, be made to exceed any given finite area.” See Heath [1912, page

234].
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While the Axiom of Archimedes is usually given as “there exists an inte-

ger n such that a < n · b,” our version works with partial Archimedean

monoids where n · b might overflow. The type function QuotientType re-

turns a type large enough to represent the number of iterations performed

by slow remainder.

Lemma 5.10 The following are Archimedean monoids: integers, rational

numbers, binary fractions { n
2k
}, ternary fractions { n

3k
}, and real numbers.

We can trivially adapt the code of slow remainder to return the quotient:

template<typename T>

requires(ArchimedeanMonoid(T))

QuotientType(T) slow_quotient(T a, T b)

{

// Precondition: a > 0 ∧ b > 0

QuotientType(T) n(0);

while (b <= a) {

a = a - b;

n = successor(n);

}

return n;

}

Repeated doubling leads to the logarithmic-complexity power algorithm.

A related algorithm is possible for remainder.2 Let us derive an expression

for the remainder u from dividing a by b in terms of the remainder v from

dividing a by 2b:

a = n(2b) + v

Since the remainder v must be less than the divisor 2b, it follows that

u =

v if v < b

v− b if v > b

That leads to the following recursive procedure:

template<typename T>

requires(ArchimedeanMonoid(T))

T remainder_recursive(T a, T b)

{

// Precondition: a > b > 0

2. The Egyptians used this algorithm to do division with remainder, as they used the

power algorithm to do multiplication. See Robins and Shute [1987, page 18].



72 Ordered Algebraic Structures

if (a - b >= b) {

a = remainder_recursive(a, b + b);

if (a < b) return a;

}

return a - b;

}

Testing a− b > b rather than a > b+ b avoids overflow of b+ b.

template<typename T>

requires(ArchimedeanMonoid(T))

T remainder_nonnegative(T a, T b)

{

// Precondition: a > 0 ∧ b > 0

if (a < b) return a;

return remainder_recursive(a, b);

}

Exercise 5.2 Analyze the complexity of remainder nonnegative.

Floyd and Knuth [1990] give a constant-space algorithm for remainder

on Archimedean monoids that performs about 31% more operations than

remainder nonnegative, but when we can divide by 2 an algorithm exists that

does not increase the operation count.3 This is likely to be possible in many

situations. For example, while the general k-section of an angle by ruler and

compass cannot be done, the bisection is trivial.

HalvableMonoid(T) ,

ArchimedeanMonoid(T)

∧ half : T → T

∧ (∀a,b ∈ T) (b > 0 ∧ a = b+ b)⇒ half(a) = b

Observe that half needs to be defined only for “even” elements.

template<typename T>

requires(HalvableMonoid(T))

T remainder_nonnegative_iterative(T a, T b)

{

// Precondition: a > 0 ∧ b > 0

3. Dijkstra [1972, page 13] attributes this algorithm to N. G. de Bruijn.
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if (a < b) return a;

T c = largest_doubling(a, b);

a = a - c;

while (c != b) {

c = half(c);

if (c <= a) a = a - c;

}

return a;

}

where largest doubling is defined by the following procedure:

template<typename T>

requires(ArchimedeanMonoid(T))

T largest_doubling(T a, T b)

{

// Precondition: a > b > 0

while (b <= a - b) b = b + b;

return b;

}

The correctness of remainder nonnegative iterative depends on the follow-

ing lemma.

Lemma 5.11 The result of doubling a positive element of a halvable monoid

k times may be halved k times.

We would only need remainder nonnegative if we had an Archimedean

monoid that was not halvable. The examples we gave—line segments in

Euclidean geometry, rational numbers, binary and ternary fractions—are

all halvable.

Project 5.1 Are there useful models of Archimedean monoids that are not

halvable monoids?

5.4 Greatest Common Divisor

For a > 0 and b > 0 in an Archimedean monoid T , we define divisibility as

follows:

b divides a⇔ (∃n ∈ QuotientType(T))a = nb

Lemma 5.12 In an Archimedean monoid T with positive x,a,b:

• b divides a⇔ remainder nonnegative(a,b) = 0
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• b divides a⇒ b 6 a

• a > b∧ x divides a∧ x divides b⇒ x divides (a− b)

• x divides a∧ x divides b⇒ x divides remainder nonnegative(a,b)

The greatest common divisor of a and b, denoted by gcd(a,b), is a

divisor of a and b that is divisible by any other common divisor of a and

b.4

Lemma 5.13 In an Archimedean monoid, the following hold for positive

x,a,b:

• gcd is commutative

• gcd is associative

• x divides a∧ x divides b⇒ x 6 gcd(a,b)

• gcd(a,b) is unique

• gcd(a,a) = a

• a > b⇒ gcd(a,b) = gcd(a− b,b)

The previous lemmas immediately imply that if the following algorithm

terminates, it returns the gcd of its arguments:5

template<typename T>

requires(ArchimedeanMonoid(T))

T subtractive_gcd_nonzero(T a, T b)

{

// Precondition: a > 0 ∧ b > 0

while (true) {

if (b < a) a = a - b;

else if (a < b) b = b - a;

else return a;

}

}

Lemma 5.14 It always terminates for integers and rationals.

4. While this definition works for Archimedean monoids, it does not depend on ordering

and can be extended to other structures with divisibility relations, such as rings.
5. It is known as Euclid’s algorithm [Heath 1925, Volume 3, pages 14–22].
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There are types for which it does not always terminate. In particular, it

does not always terminate for real numbers; specifically, it does not termi-

nate for input of
√

2 and 1. The proof of this fact depends on the following

two lemmas:

Lemma 5.15 gcd( a
gcd(a,b) , b

gcd(a,b) ) = 1

Lemma 5.16 If the square of an integer n is even, n is even.

Theorem 5.2 subtractive gcd nonzero(
√

2, 1) does not terminate.

Proof. Suppose that subtractive gcd nonzero(
√

2, 1) terminates, returning d.

Let m =
√
2
d

and n = 1
d

; by Lemma 5.15, m and n have no common factors

greater than 1. m
n

=
√
2
1 =

√
2, so m2 = 2n2; m is even; for some integer u,

m = 2u. 4u2 = 2n2, so n2 = 2u2; n is even. Both m and n are divisible by

2; a contradiction.6

A Euclidean monoid is an Archimedean monoid where subtractive gcd

nonzero always terminates:

EuclideanMonoid(T) ,

ArchimedeanMonoid(T)

∧ (∀a,b ∈ T) (a > 0∧b > 0)⇒ subtractive gcd nonzero(a,b) terminates

Lemma 5.17 Every Archimedean monoid with a smallest positive element

is Euclidean.

Lemma 5.18 The rational numbers are a Euclidean monoid.

It is straightforward to extend subtractive gcd nonzero to the case in

which one of its arguments is zero, since any b 6= 0 divides the zero of the

monoid:

template<typename T>

requires(EuclideanMonoid(T))

T subtractive_gcd(T a, T b)

{

// Precondition: a > 0 ∧ b > 0 ∧ ¬(a = 0 ∧ b = 0)

while (true) {

if (b == T(0)) return a;

6. The incommensurability of the side and the diagonal of a square was one of the first

mathematical proofs discovered by the Greeks. Aristotle refers to it in Prior Analytics

I. 23 as the canonical example of proof by contradiction (reductio ad absurdum).
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while (b <= a) a = a - b;

if (a == T(0)) return b;

while (a <= b) b = b - a;

}

}

Each of the inner while statements in subtractive gcd is equivalent to a

call of slow remainder. By using our logarithmic remainder algorithm, we

speed up the case when a and b are very different in magnitude while relying

only on primitive subtraction on type T :

template<typename T>

requires(EuclideanMonoid(T))

T fast_subtractive_gcd(T a, T b)

{

// Precondition: a > 0 ∧ b > 0 ∧ ¬(a = 0 ∧ b = 0)

while (true) {

if (b == T(0)) return a;

a = remainder_nonnegative(a, b);

if (a == T(0)) return b;

b = remainder_nonnegative(b, a);

}

}

The concept of Euclidean monoid gives us an abstract setting for the

original Euclid algorithm, which was based on repeated subtraction.

5.5 Generalizing gcd

We can use fast subtractive gcd with integers because they constitute a Eu-

clidean monoid. For integers, we could also use the same algorithm with

the built-in remainder instead of remainder nonnegative. Furthermore, the

algorithm works for certain non-Archimedean domains, provided that they

possess a suitable remainder function. For example, the standard long-

division algorithm easily extends from decimal integers to polynomials over

reals.7 Using such a remainder, we can compute the gcd of two polynomials.

Abstract algebra introduces the notion of a Euclidean ring (also known

as a Euclidean domain) to accommodate such uses of the Euclid algorithm.8

However, the requirements of semiring suffice:

7. See Chrystal [1904, Chapter 5].
8. See van der Waerden [1930, Chapter 3, Section 18].
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EuclideanSemiring(T) ,

CommutativeSemiring(T)

∧ NormType : EuclideanSemiring → Integer

∧ w : T → NormType(T)

∧ (∀a ∈ T)w(a) > 0

∧ (∀a ∈ T)w(a) = 0⇔ a = 0

∧ (∀a,b ∈ T)b 6= 0⇒ w(a · b) > w(a)

∧ remainder : T × T → T

∧ quotient : T × T → T

∧ (∀a,b ∈ T)b 6= 0⇒ a = quotient(a,b) · b+ remainder(a,b)

∧ (∀a,b ∈ T)b 6= 0⇒ w(remainder(a,b)) < w(b)

w is called the Euclidean function.

Lemma 5.19 In a Euclidean semiring, a · b = 0⇒ a = 0 ∨ b = 0.

template<typename T>

requires(EuclideanSemiring(T))

T gcd(T a, T b)

{

// Precondition: ¬(a = 0 ∧ b = 0)

while (true) {

if (b == T(0)) return a;

a = remainder(a, b);

if (a == T(0)) return b;

b = remainder(b, a);

}

}

Observe that instead of using remainder nonnegative, we use the remainder

function defined by the type. The fact that w decreases with every applica-

tion of remainder ensures termination.

Lemma 5.20 gcd terminates on a Euclidean semiring.

In a Euclidean semiring, quotient returns an element of the semiring.

This precludes its use in the original setting of Euclid: determining the

common measure of any two commensurable quantities. For example,

gcd(
1

2
,

3

4
) =

1

4

We can unify the original setting and the modern setting with the concept
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Euclidean semimodule, which allows quotient to return a different type and

takes the termination of gcd as an axiom:

EuclideanSemimodule(T ,S) ,

Semimodule(T ,S)

∧ remainder : T × T → T

∧ quotient : T × T → S

∧ (∀a,b ∈ T)b 6= 0⇒ a = quotient(a,b) · b+ remainder(a,b)

∧ (∀a,b ∈ T) (a 6= 0 ∨ b 6= 0)⇒ gcd(a,b) terminates

where gcd is defined as

template<typename T, typename S>

requires(EuclideanSemimodule(T, S))

T gcd(T a, T b)

{

// Precondition: ¬(a = 0 ∧ b = 0)

while (true) {

if (b == T(0)) return a;

a = remainder(a, b);

if (a == T(0)) return b;

b = remainder(b, a);

}

}

Since every commutative semiring is a semimodule over itself, this al-

gorithm can be used even when quotient returns the same type, as with

polynomials over reals.

5.6 Stein gcd

In 1961 Josef Stein discovered a new gcd algorithm for integers that is fre-

quently faster than Euclid’s algorithm [Stein 1967]. His algorithm depends

on these two familiar properties:

gcd(a,b) = gcd(b,a)

gcd(a,a) = a
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together with these additional properties that for all a > b > 0:

gcd(2a, 2b) = 2 gcd(a,b)

gcd(2a, 2b+ 1) = gcd(a, 2b+ 1)

gcd(2a+ 1, 2b) = gcd(2a+ 1,b)

gcd(2a+ 1, 2b+ 1) = gcd(2b+ 1,a− b)

Exercise 5.3 Implement Stein gcd for integers, and prove its termination.

While it might appear that Stein gcd depends on the binary represen-

tation of integers, the intuition that 2 is the smallest prime integer allows

generalizing it to other domains by using smallest primes in these domains;

for example, the monomial x for polynomials9 or 1 + i for Gaussian inte-

gers.10 Stein gcd could be used in rings that are not Euclidean.11

Project 5.2 Find the correct general setting for Stein gcd.

5.7 Quotient

The derivation of fast quotient and remainder exactly parallels our earlier

derivation of fast remainder. We derive an expression for the quotientm and

remainder u from dividing a by b in terms of the quotient n and remainder

v from dividing a by 2b:

a = n(2b) + v

Since the remainder v must be less than the divisor 2b, it follows that

u =

v if v < b

v− b if v > b

and

m =

2n if v < b

2n+ 1 if v > b

This leads to the following code:

template<typename T>

requires(ArchimedeanMonoid(T))

pair<QuotientType(T), T>

quotient_remainder_nonnegative(T a, T b)

9. See Knuth [1997, Exercise 4.6.1.6 (page 435) and Solution (page 673)].
10. See Weilert [2000].
11. See Agarwal and Frandsen [2004].
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{

// Precondition: a > 0 ∧ b > 0

typedef QuotientType(T) N;

if (a < b) return pair<N, T>(N(0), a);

if (a - b < b) return pair<N, T>(N(1), a - b);

pair<N, T> q = quotient_remainder_nonnegative(a, b + b);

N m = twice(q.m0);

a = q.m1;

if (a < b) return pair<N, T>(m, a);

else return pair<N, T>(successor(m), a - b);

}

When “halving” is available, we obtain the following:

template<typename T>

requires(HalvableMonoid(T))

pair<QuotientType(T), T>

quotient_remainder_nonnegative_iterative(T a, T b)

{

// Precondition: a > 0 ∧ b > 0

typedef QuotientType(T) N;

if (a < b) return pair<N, T>(N(0), a);

T c = largest_doubling(a, b);

a = a - c;

N n(1);

while (c != b) {

n = twice(n);

c = half(c);

if (c <= a) {

a = a - c;

n = successor(n);

}

}

return pair<N, T>(n, a);

}
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5.8 Quotient and Remainder for Negative

Quantities

The definition of quotient and remainder used by many computer processors

and programming languages handles negative quantities incorrectly. An

extension of our definitions for an Archimedean monoid to an Archimedean

group T must satisfy these properties, where b 6= 0:

a = quotient(a,b) · b+ remainder(a,b)

|remainder(a,b)| < |b|

remainder(a+ b,b) = remainder(a− b,b) = remainder(a,b)

The final property is equivalent to the classical mathematical definition

of congruence.12 While books on number theory usually assume b > 0,

we can consistently extend remainder to b < 0. These requirements are

not satisfied by implementations that truncate quotient toward zero, thus

violating our third requirement.13 In addition to violating the third require-

ment, truncation is an inferior way of rounding because it sends twice as

many values to zero as to any other integer, thus leading to a nonuniform

distribution.

Given a remainder procedure rem and a quotient-remainder procedure

quo rem satisfying our three requirements for non-negative inputs, we can

write adapter procedures that give correct results for positive or negative

inputs. These adapter procedures will work on an Archimedean group:

ArchimedeanGroup(T) ,

ArchimedeanMonoid(T)

∧ AdditiveGroup(T)

template<typename Op>

requires(BinaryOperation(Op) &&

ArchimedeanGroup(Domain(Op)))

Domain(Op) remainder(Domain(Op) a, Domain(Op) b, Op rem)

12. “If two numbers a and b have the same remainder r relative to the same modulus

k they will be called congruent relative to the modulus k (following Gauss)” [Dirichlet

1863].
13. For an excellent discussion of quotient and remainder, see Boute [1992]. Boute identi-

fies the two acceptable extensions as E and F; we follow Knuth in preferring what Boute

calls F.
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{

// Precondition: b 6= 0

typedef Domain(Op) T;

T r;

if (a < T(0))

if (b < T(0)) {

r = -rem(-a, -b);

} else {

r = rem(-a, b); if (r != T(0)) r = b - r;

}

else

if (b < T(0)) {

r = rem(a, -b); if (r != T(0)) r = b + r;

} else {

r = rem(a, b);

}

return r;

}

template<typename F>

requires(HomogeneousFunction(F) && Arity(F) == 2 &&

ArchimedeanGroup(Domain(F)) &&

Codomain(F) == pair<QuotientType(Domain(F)),

Domain(F)>)

pair<QuotientType(Domain(F)), Domain(F)>

quotient_remainder(Domain(F) a, Domain(F) b, F quo_rem)

{

// Precondition: b 6= 0

typedef Domain(F) T;

pair<QuotientType(T), T> q_r;

if (a < T(0)) {

if (b < T(0)) {

q_r = quo_rem(-a, -b); q_r.m1 = -q_r.m1;

} else {

q_r = quo_rem(-a, b);

if (q_r.m1 != T(0)) {

q_r.m1 = b - q_r.m1; q_r.m0 = successor(q_r.m0);

}

q_r.m0 = -q_r.m0;
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}

} else {

if (b < T(0)) {

q_r = quo_rem( a, -b);

if (q_r.m1 != T(0)) {

q_r.m1 = b + q_r.m1; q_r.m0 = successor(q_r.m0);

}

q_r.m0 = -q_r.m0;

}

else

q_r = quo_rem( a, b);

}

return q_r;

}

Lemma 5.21 remainder and quotient remainder satisfy our requirements

when their functional parameters satisfy the requirements for positive argu-

ments.

5.9 Concepts and Their Models

We have been using integer types since Chapter 2 without formally defining

the concept. Building on the ordered algebraic structures defined earlier in

this chapter, we can formalize our treatment of integers. First, we define

discrete Archimedean semiring:

DiscreteArchimedeanSemiring(T) ,

CommutativeSemiring(T)

∧ ArchimedeanMonoid(T)

∧ (∀a,b, c ∈ T)a < b∧ 0 < c⇒ a · c < b · c
∧ ¬(∃a ∈ T) 0 < a < 1

Discreteness refers to the last property: There is no element between 0

and 1.

A discrete Archimedean semiring might have negative elements. The

related concept that does not have negative elements is

NonnegativeDiscreteArchimedeanSemiring(T) ,

DiscreteArchimedeanSemiring(T)

∧ (∀a ∈ T) 0 6 a
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A discrete Archimedean semiring lacks additive inverses; the related con-

cept with additive inverses is

DiscreteArchimedeanRing(T) ,

DiscreteArchimedeanSemiring(T)

∧ AdditiveGroup(T)

Two types T and T ′ are isomorphic if it is possible to write conversion

functions from T to T ′ and from T ′ to T that preserve the procedures and

their axioms.

A concept is univalent if any types satisfying it are isomorphic. The con-

cept NonnegativeDiscreteArchimedeanSemiring is univalent; types satisfy-

ing it are isomorphic to N, the natural numbers.14 DiscreteArchimedeanRing

is univalent; types satisfying it are isomorphic to Z, the integers. As we have

seen here, adding axioms reduces the number of models of a concept, so that

one quickly reaches the point of univalency.

This chapter proceeds deductively, from more general to more specific

concepts, by adding more operations and axioms. The deductive approach

statically presents a taxonomy of concepts and affiliated theorems and algo-

rithms. The actual process of discovery proceeds inductively, starting with

concrete models, such as integers or reals, and then removing operations and

axioms to find the weakest concept to which interesting algorithms apply.

When we define a concept, the independence and consistency of its ax-

ioms must be verified, and its usefulness must be demonstrated.

A proposition is independent from a set of axioms if there is a model

in which all the axioms are true, but the proposition is false. For example,

associativity and commutativity are independent: String concatenation is

associative but not commutative, while the average of two values (x+y2 ) is

commutative but not associative. A proposition is dependent or provable

from a set of axioms if it can be derived from them.

A concept is consistent if it has a model. Continuing our example,

addition of natural numbers is associative and commutative. A concept is

inconsistent if both a proposition and its negation can be derived from its

axioms. In other words, to demonstrate consistency, we construct a model;

to demonstrate inconsistency, we derive a contradiction.

A concept is useful if there are useful algorithms for which this is the

most abstract setting. For example, parallel out-of-order reduction applies

to any associative, commutative operation.

14. We follow Peano [1908, page 27] and include 0 in the natural numbers.
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5.10 Computer Integer Types

Computer instruction sets typically provide partial representations of natu-

ral numbers and integers. For example, a bounded unsigned binary integer

type, Un, where n = 8, 16, 32, 64, . . ., is an unsigned integer type capable of

representing a value in the interval [0, 2n); a bounded signed binary integer

type, Sn, where n = 8, 16, 32, 64, . . ., is a signed integer type capable of rep-

resenting a value in the interval [−2n−1, 2n−1). Although these types are

bounded, typical computer instructions provide total operations on them

because the results are encoded as a tuple of bounded values.

Instructions on bounded unsigned types with signatures like these usu-

ally exist:

sum extended : Un ×Un ×U1 → U1 ×Un
difference extended : Un ×Un ×U1 → U1 ×Un

product extended : Un ×Un → U2n

quotient remainder extended : Un ×Un → Un ×Un

Observe that U2n can be represented as Un×Un (a pair of Un). Program-

ming languages that provide full access to these hardware operations make

it possible to write efficient and abstract software components involving

integer types.

Project 5.3 Design a family of concepts for bounded unsigned and signed

binary integers. A study of the instruction sets for modern computer ar-

chitectures shows the functionality that should be encompassed. A good

abstraction of these instruction sets is provided by MMIX [Knuth 2005].

5.11 Conclusions

We can combine algorithms and mathematical structures into a seamless

whole by describing algorithms in abstract terms and adjusting theories to fit

algorithmic requirements. The mathematics and algorithms in this chapter

are abstract restatements of results that are more than two thousand years

old.





Chapter 6

Iterators

This chapter introduces the concept of iterator: an interface between

algorithms and sequential data structures. A hierarchy of iterator concepts

corresponds to different kinds of sequential traversals: single-pass forward,

multipass forward, bidirectional, and random access.1 We investigate a va-

riety of interfaces to common algorithms, such as linear and binary search.

Bounded and counted ranges provide a flexible way of defining interfaces for

variations of a sequential algorithm.

6.1 Readability

Every object has an address: an integer index into computer memory. Ad-

dresses allow us to access or modify an object. In addition, they allow us

to create a wide variety of data structures, many of which rely on the fact

that addresses are effectively integers and allow integer-like operations.

Iterators are a family of concepts that abstract different aspects of ad-

dresses, allowing us to write algorithms that work not only with addresses

but also with any addresslike objects satisfying the minimal set of require-

ments. In Chapter 7 we introduce an even broader conceptual family: co-

ordinate structures.

There are two kinds of operations on iterators: accessing values or traver-

sal. There are three kinds of access: reading, writing, or both reading and

writing. There are four kinds of linear traversal: single-pass forward (an in-

1. Our treatment of iterators is a further refinement of the one in Stepanov and Lee [1995]

but differs from it in several aspects.
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put stream), multipass forward (a singly linked list), bidirectional (a doubly

linked list), and random access (an array).

This chapter studies the first kind of access: readability, that is, the

ability to obtain the value of the object denoted by another. A type T is

readable if a unary function source defined on it returns an object of type

ValueType(T):

Readable(T) ,

Regular(T)

∧ ValueType : Readable → Regular

∧ source : T → ValueType(T)

source is only used in contexts in which a value is needed; its result can

be passed to a procedure by value or by constant reference.

There may be objects of a readable type on which source is not de-

fined; source does not have to be total. The concept does not provide a

definition-space predicate to determine whether source is defined for a par-

ticular object. For example, given a pointer to a type T , it is impossible to

determine whether it points to a validly constructed object. Validity of the

use of source in an algorithm must be derivable from preconditions.

Accessing data by calling source on an object of a readable type is as

fast as any other way of accessing this data. In particular, for an object of a

readable type with value type T residing in main memory, we expect the cost

of source to be approximately equal to the cost of dereferencing an ordinary

pointer to T . As with ordinary pointers, there could be nonuniformity owing

to the memory hierarchy. In other words, there is no need to store pointers

instead of iterators to speed up an algorithm.

It is useful to extend source to types whose objects don’t point to other

objects. We do this by having source return its argument when applied to

an object of such a type. This allows a program to specify its requirement

for a value of type T in such a way that the requirement can be satisfied

by a value of type T , a pointer to type T , or, in general, any readable type

with a value type of T . Therefore we assume that unless otherwise defined,

ValueType(T) = T and that source returns the object to which it is applied.

6.2 Iterators

Traversal requires the ability to generate new iterators. As we saw in Chap-

ter 2, one way to generate new values of a type is with a transformation.

While transformations are regular, some one-pass algorithms do not require
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regularity of traversal, and some models, such as input streams, do not pro-

vide regularity of traversal. Thus the weakest iterator concept requires only

the pseudotransformation2 successor and the type function DistanceType:

Iterator(T) ,

Regular(T)

∧ DistanceType : Iterator → Integer

∧ successor : T → T

∧ successor is not necessarily regular

DistanceType returns an integer type large enough to measure any se-

quence of applications of successor allowable for the type. Since regularity

is assumed by default, we must explicitly state that it is not a requirement

for successor.

As with source on readable types, successor does not have to be to-

tal; there may be objects of an iterator type on which successor is not

defined. The concept does not provide a definition-space predicate to de-

termine whether successor is defined for a particular object. For example, a

pointer into an array contains no information indicating how many times it

could be incremented. Validity of the use of successor in an algorithm must

be derivable from preconditions.

The following defines the action corresponding to successor:

template<typename I>

requires(Iterator(I))

void increment(I& x)

{

// Precondition: successor(x) is defined

x = successor(x);

}

Many important algorithms, such as linear search and copying, are single-

pass; that is, they apply successor to the value of each iterator once. There-

fore they can be used with input streams, and that is why we drop the

requirement for successor to be regular: i = j does not imply successor(i) =

successor(j) even when successor is defined. Furthermore, after successor(i) is

called, i and any iterator equal to it may no longer be well formed. They re-

main partially formed and can be destroyed or assigned to; successor, source,

and = should not be applied to them.

2. A pseudotransformation has the signature of a transformation but is not regular.
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Note that successor(i) = successor(j) does not imply that i = j. Consider,

for example, two null-terminating singly linked lists.

An iterator provides as fast a linear traversal through an entire collection

of data as any other way of traversing that data.

In order for an integer type to model Iterator , it must have a distance

type. An unsigned integer type is its own distance type; for any bounded

signed binary integer type Sn, its distance type is the corresponding un-

signed type Un.

6.3 Ranges

When f is an object of an iterator type and n is an object of the correspond-

ing distance type, we want to be able to define algorithms operating on a

weak range Jf,nM of n iterators beginning with f, using code of the form

while (!zero(n)) { n = predecessor(n); ... f = successor(f); }

This property enables such an iteration:

property(I : Iterator)

weak range : I× DistanceType(I)

(f,n) 7→ (∀i ∈ DistanceType(I))

(0 6 i 6 n)⇒ successori(f) is defined

Lemma 6.1 0 6 j 6 i∧ weak range(f, i)⇒ weak range(f, j)

In a weak range, we can advance up to its size:

template<typename I>

requires(Iterator(I))

I operator+(I f, DistanceType(I) n)

{

// Precondition: n > 0 ∧ weak range(f,n)

while (!zero(n)) {

n = predecessor(n);

f = successor(f);

}

return f;

}

The addition of the following axiom ensures that there are no cycles in

the range:
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property(I : Iterator)

counted range : I× DistanceType(I)

(f,n) 7→ weak range(f,n)∧

(∀i, j ∈ DistanceType(I)) (0 6 i < j 6 n)⇒
successori(f) 6= successorj(f)

When f and l are objects of an iterator type, we want to be able to define

algorithms working on a bounded range [f, l) of iterators beginning with f

and limited by l, using code of the form

while (f != l) { ... f = successor(f); }

This property enables such an iteration:

property(I : Iterator)

bounded range : I× I
(f, l) 7→ (∃k ∈ DistanceType(I)) counted range(f,k)∧ successork(f) = l

The structure of iteration using a bounded range terminates the first

time l is encountered; therefore, unlike a weak range, it cannot have cycles.

In a bounded range, we can implement3 a partial subtraction on itera-

tors:

template<typename I>

requires(Iterator(I))

DistanceType(I) operator-(I l, I f)

{

// Precondition: bounded range(f, l)

DistanceType(I) n(0);

while (f != l) {

n = successor(n);

f = successor(f);

}

return n;

}

Because successor may not be regular, subtraction should be used only

in preconditions or in situations in which we only want to compute the size

of a bounded range.

Our definitions of + and − between iterators and integers are not incon-

sistent with mathematical usage, where + and − are always defined on the

same type. As in mathematics, both + between iterators and integers and

3. Notice the similarity to distance from Chapter 2.
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− between iterators are defined inductively in terms of successor. The stan-

dard inductive definition of addition on natural numbers uses the successor

function:4

a+ 0 = a

a+ successor(b) = successor(a+ b)

Our iterative definition of f+n for iterators is equivalent even though f and

n are of different types. As with natural numbers, a variant of associativity

is provable by induction.

Lemma 6.2 (f + n) + m = f + (n + m)

In preconditions we need to specify membership within a range. We

borrow conventions from intervals (see Appendix A) to introduce half-open

and closed ranges. We use variations of the notation for weak or counted

ranges and for bounded ranges.

A half-open weak or counted range Jf,nM, where n > 0 is an integer,

denotes the sequence of iterators {successork(f) | 0 6 k < n}. A closed weak

or counted range Jf,nK, where n > 0 is an integer, denotes the sequence of

iterators {successork(f) | 0 6 k 6 n}.

A half-open bounded range [f, l) is equivalent to the half-open counted

range Jf, l − fM. A closed bounded range [f, l] is equivalent to the closed

counted range Jf, l− fK.
The size of a range is the number of iterators in the sequence it denotes.

Lemma 6.3 successor is defined for every iterator in a half-open range and

for every iterator except the last in a closed range.

If r is a range and i is an iterator, we say that i ∈ r if i is a member of

the corresponding set of iterators.

Lemma 6.4 If i ∈ [f, l), both [f, i) and [i, l) are bounded ranges.

Empty half-open ranges are specified by Ji, 0M or [i, i) for some iterator

i. There are no empty closed ranges.

Lemma 6.5 i /∈ Ji, 0M ∧ i /∈ [i, i)

Lemma 6.6 Empty ranges have neither first nor last elements.

It is useful to describe an empty sequence of iterators starting at a partic-

ular iterator. For example, binary search looks for the sequence of iterators

4. First introduced in Grassmann [1861]; Grassmann’s definition was popularized in Peano

[1908].
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whose values are equal to a given value. This sequence is empty if there are

no such values but is positioned where they would appear if inserted.

An iterator l is called the limit of a half-open bounded range [f, l). An

iterator f+n is the limit of a half-open weak range Jf,nM. Observe that an

empty range has a limit even though it does not have a first or last element.

Lemma 6.7 The size of a half-open weak range Jf,nM is n. The size of a

closed weak range Jf,nK is n + 1. The size of a half-open bounded range

[f, l) is l− f. The size of a closed bounded range [f, l] is (l− f) + 1.

If i and j are iterators in a counted or bounded range, we define the

relation i ≺ j to mean that i 6= j ∧ bounded range(i, j): in other words,

that one or more applications of successor leads from i to j. The relation

≺ (“precedes”) and the corresponding reflexive relation � (“precedes or

equal”) are used in specifications, such as preconditions and postconditions

of algorithms. For many pairs of values of an iterator type, ≺ is not defined,

so there is often no effective way to write code implementing≺. For example,

there is no efficient way to determine whether one node precedes another in

a linked structure; the nodes might not even be linked together.

6.4 Readable Ranges

A range of iterators from a type modeling Readable and Iterator is readable

if source is defined on all the iterators in the range:

property(I : Readable)

requires(Iterator(I))

readable bounded range : I× I
(f, l) 7→ bounded range(f, l)∧ (∀i ∈ [f, l)) source(i) is defined

Observe that source need not be defined on the limit of the range. Also,

since an iterator may no longer be well-formed after successor is applied, it

is not guaranteed that source can be applied to an iterator after its succes-

sor has been obtained. readable weak range and readable counted range are

defined similarly.

Given a readable range, we could apply a procedure to each value in the

range:

template<typename I, typename Proc>

requires(Readable(I) && Iterator(I) &&

Procedure(Proc) && Arity(Proc) == 1 &&

ValueType(I) == InputType(Proc, 0))
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Proc for_each(I f, I l, Proc proc)

{

// Precondition: readable bounded range(f, l)

while (f != l) {

proc(source(f));

f = successor(f);

}

return proc;

}

We return the procedure because it could have accumulated useful in-

formation during the traversal.5

We implement linear search with the following procedure:

template<typename I>

requires(Readable(I) && Iterator(I))

I find(I f, I l, const ValueType(I)& x)

{

// Precondition: readable bounded range(f, l)

while (f != l && source(f) != x) f = successor(f);

return f;

}

Either the returned iterator is equal to the limit of the range, or its value

is equal to x. Returning the limit indicates failure of the search. Since there

are n+1 outcomes for a search of a range of size n, the limit serves a useful

purpose here and in many other algorithms. A search involving find can

be restarted by advancing past the returned iterator and then calling find

again.

Changing the comparison with x to use equality instead of inequality

gives us find not.

We can generalize from searching for an equal value to searching for the

first value satisfying a unary predicate:

template<typename I, typename P>

requires(Readable(I) && Iterator(I) &&

UnaryPredicate(P) && ValueType(I) == Domain(P))

I find_if(I f, I l, P p)

{

// Precondition: readable bounded range(f, l)

while (f != l && !p(source(f))) f = successor(f);

5. A function object can be used in this way.
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return f;

}

Applying the predicate instead of its complement gives us find if not.

Exercise 6.1 Use find if and find if not to implement quantifier functions

all, none, not all, and some, each taking a bounded range and a predicate.

The find and quantifier functions let us search for values satisfying a

condition; we can also count the number of satisfying values:

template<typename I, typename P, typename J>

requires(Readable(I) && Iterator(I) &&

UnaryPredicate(P) && Iterator(J) &&

ValueType(I) == Domain(P))

J count_if(I f, I l, P p, J j)

{

// Precondition: readable bounded range(f, l)

while (f != l) {

if (p(source(f))) j = successor(j);

f = successor(f);

}

return j;

}

Passing j explicitly is useful when adding an integer to j takes linear

time. The type J could be any integer or iterator type, including I.

Exercise 6.2 Implement count if by passing an appropriate function ob-

ject to for each and extracting the accumulation result from the returned

function object.

The natural default is to start the count from zero and use the distance

type of the iterators:

template<typename I, typename P>

requires(Readable(I) && Iterator(I) &&

UnaryPredicate(P) && ValueType(I) == Domain(P))

DistanceType(I) count_if(I f, I l, P p) {

// Precondition: readable bounded range(f, l)

return count_if(f, l, p, DistanceType(I)(0));

}

Replacing the predicate with an equality test gives us count; negating

the tests gives us count not and count if not.
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The notation
∑n
i=0 ai for the sum of the ai is frequently generalized

to other binary operations; for example,
∏n
i=0 ai is used for products and∧n

i=0 ai for conjunctions. In each case, the operation is associative, which

means that the grouping is not important. Kenneth Iverson unified this

notation in the programming language APL with the reduction operator /,

which takes a binary operation and a sequence and reduces the elements

into a single result.6 For example, +/1 2 3 equals 6.

Iverson does not restrict reduction to associative operations. We extend

Iverson’s reduction to work on iterator ranges but restrict it to partially

associative operations: If an operation is defined between adjacent elements,

it can be reassociated:

property(Op : BinaryOperation)

partially associative : Op

op 7→ (∀a,b, c ∈ Domain(Op))

If op(a,b) and op(b, c) are defined,

op(op(a,b), c) and op(a,op(b, c))) are defined

and are equal.

As an example of an operation that is partially associative but not as-

sociative, consider concatenation of two ranges [f0, l0) and [f1, l1), which is

defined only when l0 = f1.

We allow a unary function to be applied to each iterator before the binary

operation is performed, obtaining ai from i. Since an arbitrary partially

associative operation might not have an identity, we provide a version of

reduction requiring a nonempty range:

template<typename I, typename Op, typename F>

requires(Iterator(I) && BinaryOperation(Op) &&

UnaryFunction(F) &&

I == Domain(F) && Codomain(F) == Domain(Op))

Domain(Op) reduce_nonempty(I f, I l, Op op, F fun)

{

// Precondition: bounded range(f, l)∧ f 6= l
// Precondition: partially associative(op)

// Precondition: (∀x ∈ [f, l)) fun(x) is defined

Domain(Op) r = fun(f);

f = successor(f);

while (f != l) {

6. See Iverson [1962].
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r = op(r, fun(f));

f = successor(f);

}

return r;

}

The natural default for fun is source. An identity element can be passed

in to be returned on an empty range:

template<typename I, typename Op, typename F>

requires(Iterator(I) && BinaryOperation(Op) &&

UnaryFunction(F) &&

I == Domain(F) && Codomain(F) == Domain(Op))

Domain(Op) reduce(I f, I l, Op op, F fun, const Domain(Op)& z)

{

// Precondition: bounded range(f, l)

// Precondition: partially associative(op)

// Precondition: (∀x ∈ [f, l)) fun(x) is defined

if (f == l) return z;

return reduce_nonempty(f, l, op, fun);

}

When operations involving the identity element are slow or require extra

logic to implement, the following procedure is useful:

template<typename I, typename Op, typename F>

requires(Iterator(I) && BinaryOperation(Op) &&

UnaryFunction(F) &&

I == Domain(F) && Codomain(F) == Domain(Op))

Domain(Op) reduce_nonzeroes(I f, I l,

Op op, F fun, const Domain(Op)& z)

{

// Precondition: bounded range(f, l)

// Precondition: partially associative(op)

// Precondition: (∀x ∈ [f, l)) fun(x) is defined

Domain(Op) x;

do {

if (f == l) return z;

x = fun(f);

f = successor(f);

} while (x == z);
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while (f != l) {

Domain(Op) y = fun(f);

if (y != z) x = op(x, y);

f = successor(f);

}

return x;

}

Algorithms taking a bounded range have a corresponding version taking

a weak or counted range; more information, however, needs to be returned:

template<typename I, typename Proc>

requires(Readable(I) && Iterator(I) &&

Procedure(Proc) && Arity(Proc) == 1 &&

ValueType(I) == InputType(Proc, 0))

pair<Proc, I> for_each_n(I f, DistanceType(I) n, Proc proc)

{

// Precondition: readable weak range(f,n)

while (!zero(n)) {

n = predecessor(n);

proc(source(f));

f = successor(f);

}

return pair<Proc, I>(proc, f);

}

The final value of the iterator must be returned because the lack of

regularity of successor means that it could not be recomputed. Even for

iterators where successor is regular, recomputing it could take time linear in

the size of the range.

template<typename I>

requires(Readable(I) && Iterator(I))

pair<I, DistanceType(I)> find_n(I f, DistanceType(I) n,

const ValueType(I)& x)

{

// Precondition: readable weak range(f,n)

while (!zero(n) && source(f) != x) {

n = predecessor(n);

f = successor(f);

}
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return pair<I, DistanceType(I)>(f, n);

}

find n returns the final value of the iterator and the count because both

are needed to restart a search.

Exercise 6.3 Implement variations taking a weak range instead of a bounded

range of all the versions of find, quantifiers, count, and reduce.

We can eliminate one of the two tests in the loop of find if when we are

assured that an element in the range satisfies the predicate; such an element

is called a sentinel:

template<typename I, typename P>

requires(Readable(I) && Iterator(I) &&

UnaryPredicate(P) && ValueType(I) == Domain(P))

I find_if_unguarded(I f, P p) {

// Precondition: (∃l) readable bounded range(f, l)∧ some(f, l,p)

while (!p(source(f))) f = successor(f);

return f;

// Postcondition: p(source(f))

}

Applying the predicate instead of its complement gives find if not unguarded.

Given two ranges with the same value type and a relation on that value

type, we can search for a mismatched pair of values:

template<typename I0, typename I1, typename R>

requires(Readable(I0) && Iterator(I0) &&

Readable(I1) && Iterator(I1) && Relation(R) &&

ValueType(I0) == ValueType(I1) &&

ValueType(I0) == Domain(R))

pair<I0, I1> find_mismatch(I0 f0, I0 l0, I1 f1, I1 l1, R r)

{

// Precondition: readable bounded range(f0, l0)

// Precondition: readable bounded range(f1, l1)

while (f0 != l0 && f1 != l1 && r(source(f0), source(f1))) {

f0 = successor(f0);

f1 = successor(f1);

}

return pair<I0, I1>(f0, f1);

}
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Exercise 6.4 State the postcondition for find mismatch, and explain why

the final values of both iterators are returned.

The natural default for the relation in find mismatch is the equality on

the value type.

Exercise 6.5 Design variations of find mismatch for all four combinations

of counted and bounded ranges.

Sometimes, it is important to find a mismatch not between ranges but

between adjacent elements of the same range:

template<typename I, typename R>

requires(Readable(I) && Iterator(I) &&

Relation(R) && ValueType(I) == Domain(R))

I find_adjacent_mismatch(I f, I l, R r)

{

// Precondition: readable bounded range(f, l)

if (f == l) return l;

ValueType(I) x = source(f);

f = successor(f);

while (f != l && r(x, source(f))) {

x = source(f);

f = successor(f);

}

return f;

}

We must copy the previous value because we cannot apply source to an

iterator after successor has been applied to it. The weak requirements of

Iterator also imply that returning the first iterator in the mismatched pair

may return a value that is not well formed.

6.5 Increasing Ranges

Given a relation on the value type of some iterator, a range over that iterator

type is called relation preserving if the relation holds for every adjacent pair

of values in the range. In other words, find adjacent mismatch will return

the limit when called with this range and relation:

template<typename I, typename R>

requires(Readable(I) && Iterator(I) &&

Relation(R) && ValueType(I) == Domain(R))
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bool relation_preserving(I f, I l, R r)

{

// Precondition: readable bounded range(f, l)

return l == find_adjacent_mismatch(f, l, r);

}

Given a weak ordering r, we say that a range is r-increasing if it is

relation preserving with respect to the complement of the converse of r.

Given a weak ordering r, we say that a range is strictly r-increasing if it is

relation preserving with respect to r.7 It is straightforward to implement a

test for a strictly increasing range:

template<typename I, typename R>

requires(Readable(I) && Iterator(I) &&

Relation(R) && ValueType(I) == Domain(R))

bool strictly_increasing_range(I f, I l, R r)

{

// Precondition: readable bounded range(f, l)∧ weak ordering(r)

return relation_preserving(f, l, r);

}

With the help of a function object, we can implement a test for an

increasing range:

template<typename R>

requires(Relation(R))

struct complement_of_converse

{

typedef Domain(R) T;

R r;

complement_of_converse(const R& r) : r(r) { }

bool operator()(const T& a, const T& b)

{

return !r(b, a);

}

};

template<typename I, typename R>

7. Some authors use nondecreasing and increasing instead of increasing and strictly in-

creasing, respectively.
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requires(Readable(I) && Iterator(I) &&

Relation(R) && ValueType(I) == Domain(R))

bool increasing_range(I f, I l, R r)

{

// Precondition: readable bounded range(f, l)∧ weak ordering(r)

return relation_preserving(

f, l,

complement_of_converse<R>(r));

}

Defining strictly increasing counted range and increasing counted range is

straightforward.

Given a predicate p on the value type of some iterator, a range over that

iterator type is called p-partitioned if any values of the range satisfying the

predicate follow every value of the range not satisfying the predicate. A test

that shows whether a range is p-partitioned is straightforward:

template<typename I, typename P>

requires(Readable(I) && Iterator(I) &&

UnaryPredicate(P) && ValueType(I) == Domain(P))

bool partitioned(I f, I l, P p)

{

// Precondition: readable bounded range(f, l)

return l == find_if_not(find_if(f, l, p), l, p);

}

The iterator returned by the call of find if is called the partition point;

it is the first iterator, if any, whose value satisfies the predicate.

Exercise 6.6 Implement the predicate partitioned n, which tests whether a

counted range is p-partitioned.

Linear search must invoke source after each application of successor be-

cause a failed test provides no information about the value of any other

iterator in the range. However, the uniformity of a partitioned range gives

us more information.

Lemma 6.8 If p is a predicate and [f, l) is a p-partitioned range:

(∀m ∈ [f, l))¬p(source(m))⇒ (∀j ∈ [f,m])¬p(source(j))

(∀m ∈ [f, l))p(source(m))⇒ (∀j ∈ [m, l))p(source(j))

This suggests a bisection algorithm for finding the partition point: As-

suming a uniform distribution, testing the midpoint of the range reduces
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the search space by a factor of 2. However, such an algorithm may need

to traverse an already traversed subrange, which requires the regularity of

successor.

6.6 Forward Iterators

Making successor regular allows us to pass through the same range more

than once and to maintain more than one iterator into the range:

ForwardIterator(T) ,

Iterator(T)

∧ regular unary function(successor)

Note that Iterator and ForwardIterator differ only by an axiom; there

are no new operations. In addition to successor, all the other functional pro-

cedures defined on refinements of the forward iterator concept introduced

later in the chapter are regular. The regularity of successor allows us to im-

plement find adjacent mismatch without saving the value before advancing:

template<typename I, typename R>

requires(Readable(I) && ForwardIterator(I) &&

Relation(R) && ValueType(I) == Domain(R))

I find_adjacent_mismatch_forward(I f, I l, R r)

{

// Precondition: readable bounded range(f, l)

if (f == l) return l;

I t;

do {

t = f;

f = successor(f);

} while (f != l && r(source(t), source(f)));

return f;

}

Note that t points to the first element of this mismatched pair and could

also be returned.

In Chapter 10 we show how to use concept dispatch to overload versions

of an algorithm written for different iterator concepts. Suffixes such as

forward allow us to disambiguate the different versions.

The regularity of successor also allows us to implement the bisection

algorithm for finding the partition point:
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template<typename I, typename P>

requires(Readable(I) && ForwardIterator(I) &&

UnaryPredicate(P) && ValueType(I) == Domain(P))

I partition_point_n(I f, DistanceType(I) n, P p)

{

// Precondition: readable counted range(f,n)∧ partitioned n(f,n,p)

while (!zero(n)) {

DistanceType(I) h = half_nonnegative(n);

I m = f + h;

if (p(source(m))) {

n = h;

} else {

n = n - successor(h); f = successor(m);

}

}

return f;

}

Lemma 6.9 partition point n returns the partition point of the p-partitioned

range Jf,nM.

Finding the partition point in a bounded range by bisection8 requires

first finding the size of the range:

template<typename I, typename P>

requires(Readable(I) && ForwardIterator(I) &&

UnaryPredicate(P) && ValueType(I) == Domain(P))

I partition_point(I f, I l, P p)

{

// Precondition: readable bounded range(f, l)∧ partitioned(f, l,p)

return partition_point_n(f, l - f, p);

}

The definition of partition point immediately leads to binary search algo-

rithms on an r-increasing range for a weak ordering r. Any value a, whether

or not it appears in the increasing range, determines two iterators in the

range called lower bound and upper bound . Informally, a lower bound is the

8. The bisection technique dates back at least as far as the proof of the Intermediate Value

Theorem in Bolzano [1817] and, independently, in Cauchy [1821]. While Bolzano and

Cauchy used the technique for the most general case of continuous functions, Lagrange

[1795] had previously used it to solve a particular problem of approximating a root of

a polynomial. The first description of bisection for searching was John W. Mauchly’s

lecture “Sorting and collating” [Mauchly 1946].



6.6 Forward Iterators 105

first position where a value equivalent to a could occur in the increasing

sequence. Similarly, an upper bound is the successor of the last position

where a value equivalent to a could occur. Therefore elements equivalent

to a appear only in the half-open range from lower bound to upper bound.

For example, assuming total ordering, a sequence with lower bound l and

upper bound u for the value a looks like this:

x0, x1, . . . , xl−1︸ ︷︷ ︸
xi<a

, xl, . . . , xu−1︸ ︷︷ ︸
xi=a

, xu, xu+1, . . . , xn−1︸ ︷︷ ︸
xi>a

Note that any of the three regions may be empty.

Lemma 6.10 In an increasing range [f, l), for any value a of the value type

of the range, the range is partitioned by the following two predicates:

lower bounda(x)⇔ ¬r(x,a)

upper bounda(x)⇔ r(a, x)

That allows us to formally define lower bound and upper bound as the

partition points of the corresponding predicates.

Lemma 6.11 The lower-bound iterator precedes or equals the upper-bound

iterator.

Implementing a function object corresponding to the predicate leads

immediately to an algorithm for determining the lower bound:

template<typename R>

requires(Relation(R))

struct lower_bound_predicate

{

typedef Domain(R) T;

const T& a;

R r;

lower_bound_predicate(const T& a, R r) : a(a), r(r) { }

bool operator()(const T& x) { return !r(x, a); }

};

template<typename I, typename R>

requires(Readable(I) && ForwardIterator(I) &&

Relation(R) && ValueType(I) == Domain(R))

I lower_bound_n(I f, DistanceType(I) n,

const ValueType(I)& a, R r)
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{

// Precondition: weak ordering(r)∧ increasing counted range(f,n, r)

lower_bound_predicate<R> p(a, r);

return partition_point_n(f, n, p);

}

Similarly, for the upper bound:

template<typename R>

requires(Relation(R))

struct upper_bound_predicate

{

typedef Domain(R) T;

const T& a;

R r;

upper_bound_predicate(const T& a, R r) : a(a), r(r) { }

bool operator()(const T& x) { return r(a, x); }

};

template<typename I, typename R>

requires(Readable(I) && ForwardIterator(I) &&

Relation(R) && ValueType(I) == Domain(R))

I upper_bound_n(I f, DistanceType(I) n,

const ValueType(I)& a, R r)

{

// Precondition: weak ordering(r)∧ increasing counted range(f,n, r)

upper_bound_predicate<R> p(a, r);

return partition_point_n(f, n, p);

}

Exercise 6.7 Implement a procedure that returns both lower and upper

bounds and does fewer comparisons than the sum of the comparisons that

would be done by calling both lower bound n and upper bound n.9

Applying the predicate in the middle of the range ensures the optimal

worst-case number of predicate applications in the partition-point algorithm.

Any other choice would be defeated by an adversary who ensures that the

larger subrange contains the partition point. Prior knowledge of the ex-

pected position of the partition point would lead to probing at that point.

9. A similar STL function is called equal range.
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partition point n applies the predicate blog2 nc+1 times, since the length

of the range is reduced by a factor of 2 at each step. The algorithm performs

a logarithmic number of iterator/integer additions.

Lemma 6.12 For a forward iterator, the total number of successor oper-

ations performed by the algorithm is less than or equal to the size of the

range.

partition point also calculates l − f, which, for forward iterators, adds

another n calls of successor. It is worthwhile to use it on forward iterators,

such as linked lists, whenever the predicate application is more expensive

than calling successor.

Lemma 6.13 Assuming that the expected distance to the partition point

is equal to half the size of the range, partition point is faster than find if on

finding the partition point for forward iterators whenever

costsuccessor <
1

3
(1 −

2 log2 n

n
)costpredicate

6.7 Indexed Iterators

In order for partition point, lower bound, and upper bound to dominate lin-

ear search, we need to ensure that adding an integer to an iterator and

subtracting an iterator from an iterator are fast:

IndexedIterator(T) ,

ForwardIterator(T)

∧ + : T × DistanceType(T)→ T

∧ − : T × T → DistanceType(T)

∧ + takes constant time

∧ − takes constant time

The operations + and −, which were defined for Iterator in terms of

successor, are now required to be primitive and fast: This concept differs

from ForwardIterator only by strengthening complexity requirements. We

expect the cost of + and − on indexed iterators to be essentially identical

to the cost of successor.

6.8 Bidirectional Iterators

There are situations in which indexing is not possible, but we have the

ability to go backward:
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BidirectionalIterator(T) ,

ForwardIterator(T)

∧ predecessor : T → T

∧ predecessor takes constant time

∧ (∀i ∈ T) successor(i) is defined⇒
predecessor(successor(i)) is defined and equals i

∧ (∀i ∈ T) predecessor(i) is defined⇒
successor(predecessor(i)) is defined and equals i

As with successor, predecessor does not have to be total; the axioms of

the concept relate its definition space to that of successor. We expect the

cost of predecessor to be essentially identical to the cost of successor.

Lemma 6.14 If successor is defined on bidirectional iterators i and j,

successor(i) = successor(j)⇒ i = j

In a weak range of bidirectional iterators, movement backward as far as

the beginning of the range is possible:

template<typename I>

requires(BidirectionalIterator(I))

I operator-(I l, DistanceType(I) n)

{

// Precondition: n > 0 ∧ (∃f ∈ I)weak range(f,n)∧ l = f+ n

while (!zero(n)) {

n = predecessor(n);

l = predecessor(l);

}

return l;

}

With bidirectional iterators, we can search backward. As we noted ear-

lier, when searching a range of n iterators, there are n+ 1 outcomes; this is

true whether we search forward or backward. So we need a convention for

representing the returned value. To indicate “not found,” we return f, which

forces us to return successor(i) if we find a satisfying element at iterator i:

template<typename I, typename P>

requires(Readable(I) && BidirectionalIterator(I) &&

UnaryPredicate(P) && ValueType(I) == Domain(P))

I find_backward_if(I f, I l, P p)

{
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// Precondition: readable bounded range(f, l)

while (l != f && !p(source(predecessor(l))))

l = predecessor(l);

return l;

}

Comparing this with find if illustrates a program transformation: f and l

interchange roles, source(i) becomes source(predecessor(i)), and successor(i)

becomes predecessor(i). Under this transformation, in a nonempty range, l

is dereferenceable, but f is not.

The program transformation just demonstrated can be applied to any

algorithm that takes a range of forward iterators. Thus it is possible to im-

plement an adapter type that, given a bidirectional iterator type, produces

another bidirectional iterator type where successor becomes predecessor,

predecessor becomes successor, and source becomes source of predecessor.10

This adapter type allows any algorithm on iterators or forward iterators to

work backward on bidirectional iterators, and it also allows any algorithm

on bidirectional iterators to interchange the traversal directions.

Exercise 6.8 Rewrite find backward if with only one call of predecessor in

the loop.

Exercise 6.9 As an example of an algorithm that uses both successor and

predecessor, implement a predicate that determines whether a range is a

palindrome: It reads the same way forward and backward.

6.9 Random-Access Iterators

Some iterator types satisfy the requirements of both indexed and bidirec-

tional iterators. These types, called random-access iterators, provide the

full power of computer addresses:

RandomAccessIterator(T) ,

IndexedIterator(T)∧ BidirectionalIterator(T)

∧ TotallyOrdered(T)

∧ (∀i, j ∈ T) i < j⇔ i ≺ j
∧ DifferenceType : RandomAccessIterator → Integer

∧ + : T × DifferenceType(T)→ T

∧ − : T × DifferenceType(T)→ T

∧ − : T × T → DifferenceType(T)

10. In STL this is called a reverse iterator adapter.
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∧ < takes constant time

∧ − between an iterator and an integer takes constant time

DifferenceType(T) is large enough to contain distances and their additive

inverses; if i and j are iterators from a valid range, i − j is always defined.

It is possible to add a negative integer to, or subtract it from, an iterator.

On weaker iterator types, the operations + and − are only defined within

one range. For random-access iterator types, this holds for < as well as for

+ and −. In general, an operation on two iterators is defined only when

they belong to the same range.

Project 6.1 Define axioms relating the operations of random-access itera-

tors to each other.

We do not describe random-access iterators in great detail, because of

the following.

Theorem 6.1 For any procedure defined on an explicitly given range of

random-access iterators, there is another procedure defined on indexed it-

erators with the same complexity.

Proof. Since the operations on random-access iterators are only defined on

iterators belonging to the same range, it is possible to implement an adapter

type that, given an indexed iterator type, produces a random-access iterator

type. The state of such an iterator contains an iterator f and an integer i

and represents the iterator f+ i. The iterator operations, such as +, −, and

<, operate on i; source operates on f+i. In other words, an iterator pointing

to the beginning of the range, together with an index into the range, behave

like a random-access iterator.

The theorem shows the theoretical equivalence of these concepts in any

context in which the beginnings of ranges are known. In practice, we have

found that there is no performance penalty for using the weaker concept.

In some cases, however, a signature needs to be adjusted to include the

beginning of the range.

Project 6.2 Implement a family of abstract procedures for finding a subse-

quence within a sequence. Describe the tradeoffs for selecting an appropriate

algorithm.11

11. Two of the best-known algorithms for this problem are Boyer and Moore [1977] and

Knuth et al. [1977]. Musser and Nishanov [1997] serves as a good foundation for the

abstract setting for these algorithms.
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Figure 6.1: Iterator concepts

6.10 Conclusions

Algebra provides us with a hierarchy of concepts, such as semigroups, mon-

oids, and groups, that allows us to state algorithms in the most general

context. Similarly, the iterator concepts (Figure 6.1) allow us to state al-

gorithms on sequential data structures in their most general context. The

development of these concepts used three kinds of refinement: adding an op-

eration, strengthening semantics, and tightening complexity requirement. In

particular, the three concepts iterator, forward iterator, and indexed iterator

differ not by their operations but only by their semantics and complexity.

A variety of search algorithms for different iterator concepts, counted and

bounded ranges, and range ordering serve as the foundation of sequential

programming.





Chapter 7

Coordinate Structures

Chapter 6 introduced a family of iterator concepts as the interface be-

tween algorithms and objects in data structures with immutable linear shape.

This chapter goes beyond iterators to coordinate structures with more com-

plex shape. We introduce bifurcate coordinates and implement algorithms

on binary trees with the help of a machine for iterative tree traversal. Af-

ter discussing a concept schema for coordinate structures, we conclude with

algorithms for isomorphism, equivalence, and ordering.

7.1 Bifurcate Coordinates

Iterators allow us to traverse linear structures, which have a single successor

at each position. While there are data structures with an arbitrary number

of successors, in this chapter we study an important case of structures with

exactly two successors at every position, labeled left and right. In order to

define algorithms on these structures, we define the following concept:

BifurcateCoordinate(T) ,

Regular(T)

∧ WeightType : BifurcateCoordinate → Integer

∧ empty : T → bool

∧ has left successor : T → bool

∧ has right successor : T → bool

∧ left successor : T → T

∧ right successor : T → T

∧ (∀i, j ∈ T) (left successor(i) = j∨ right successor(i) = j)⇒ ¬empty(j)

113



114 Coordinate Structures

The WeightType type function returns a type capable of counting all

the objects in a traversal that uses a bifurcate coordinate. WeightType is

analogous to DistanceType for an iterator type.

The predicate empty is everywhere defined. If it returns true, none of the

other procedures are defined. empty is the negation of the definition-space

predicate for both has left successor and has right successor. has left successor

is the definition-space predicate for left successor, and has right successor is

the definition-space predicate for right successor. In other words, if a bifur-

cate coordinate is not empty, has left successor and has right successor are

defined; if either one of them returns true, the corresponding successor func-

tion is defined. With iterators, algorithms use a limit or count to indicate

the end of a range. With bifurcate coordinates, there are many positions

at which branches end. Therefore it is more natural to introduce the pred-

icates has left successor and has right successor for determining whether a

coordinate has successors.

In this book we describe algorithms on BifurcateCoordinate, where all

the operations are regular. This is different from the Iterator concept, where

the most fundamental algorithms, such as find, do not require regularity of

successor and where there are nonregular models, such as input streams.

Structures where application of left successor and right successor change the

shape of the underlying binary tree require a concept of WeakBifurcateCoor -

dinate, where the operations are not regular.

The shape of a structure accessed via iterators is possibly cyclic for a

weak range and is a linear segment for a counted or bounded range. In order

to discuss the shape of a structure accessed via bifurcate coordinates, we

need a notion of reachability.

A bifurcate coordinate y is a proper descendant of another coordinate x

if y is the left or right successor of x or if it is a proper descendant of the

left or right successor of x. A bifurcate coordinate y is a descendant of a

coordinate x if y = x or y is a proper descendant of x.

The descendants of x form a directed acyclic graph (DAG) if for all y in

the descendants of x, y is not its own proper descendant. In other words, no

sequence of successors of any coordinate leads back to itself. x is called the

root of the DAG of its descendants. If the descendants of x form a DAG and

are finite in number, they form a finite DAG. The height of a finite DAG is

one more than the maximum sequence of successors starting from its root,

or zero if it is empty.

A bifurcate coordinate y is left reachable from x if it is a descendant of

the left successor of x, and similarly for right reachable.

The descendants of x form a tree if they form a finite DAG and for all
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y, z in the descendants of x, z is not both left reachable and right reachable

from y. In other words, there is a unique sequence of successors from a

coordinate to any of its descendants. The property of being a tree serves the

same purpose for the algorithms in this chapter as the properties of being a

bounded or counted range served in Chapter 6, with finiteness guaranteeing

termination:

property(C : BifurcateCoordinate)

tree : C

x 7→ the descendants of x form a tree

These are the recursive algorithms for computing the weight and height

of a tree:

template<typename C>

requires(BifurcateCoordinate(C))

WeightType(C) weight_recursive(C c)

{

// Precondition: tree(c)

typedef WeightType(C) N;

if (empty(c)) return N(0);

N l(0);

N r(0);

if (has_left_successor(c))

l = weight_recursive(left_successor(c));

if (has_right_successor(c))

r = weight_recursive(right_successor(c));

return successor(l + r);

}

template<typename C>

requires(BifurcateCoordinate(C))

WeightType(C) height_recursive(C c)

{

// Precondition: tree(c)

typedef WeightType(C) N;

if (empty(c)) return N(0);

N l(0);

N r(0);

if (has_left_successor(c))
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l = height_recursive(left_successor(c));

if (has_right_successor(c))

r = height_recursive(right_successor(c));

return successor(max(l, r));

}

Lemma 7.1 height recursive(x) 6 weight recursive(x)

height recursive correctly computes the height of a DAG but visits each

coordinate as many times as there are paths to it; this fact means that

weight recursive does not correctly compute the weight of a DAG. Algo-

rithms for traversing DAGs and cyclic structures require marking: a way of

remembering which coordinates have been previously visited.

There are three primary depth-first tree-traversal orders. All three fully

traverse the left descendants and then the right descendants. Preorder visits

to a coordinate occur before the traversal of its descendants; inorder visits

occur between the traversals of the left and right descendants; postorder

visits occur after traversing all descendants. We name the three visits with

the following type definition:

enum visit { pre, in, post };

We can perform any combination of the traversals with a single procedure

that takes as a parameter another procedure taking the visit together with

the coordinate:

template<typename C, typename Proc>

requires(BifurcateCoordinate(C) &&

Procedure(Proc) && Arity(Proc) == 2 &&

visit == InputType(Proc, 0) &&

C == InputType(Proc, 1))

Proc traverse_nonempty(C c, Proc proc)

{

// Precondition: tree(c)∧ ¬empty(c)

proc(pre, c);

if (has_left_successor(c))

proc = traverse_nonempty(left_successor(c), proc);

proc(in, c);

if (has_right_successor(c))

proc = traverse_nonempty(right_successor(c), proc);

proc(post, c);

return proc;

}
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7.2 Bidirectional Bifurcate Coordinates

Recursive traversal requires stack space proportional to the height of the

tree, which can be as large as the weight; this is often unacceptable for

large, unbalanced trees. Also, the interface to traverse nonempty does not

allow concurrent traversal of multiple trees. In general, traversing more than

one tree concurrently requires a stack per tree. If we combined a coordinate

with a stack of previous coordinates, we would obtain a new coordinate

type with an additional transformation for obtaining the predecessor. (It

would be more efficient to use actions rather than transformations, to avoid

copying the stack each time.) Such a coordinate would model the concept

bidirectional bifurcate coordinate. There is a simpler and more flexible model

of this concept: trees that include a predecessor link in each node. Such

trees allow concurrent, constant-space traversals and make possible various

rebalancing algorithms. The overhead for the extra link is usually justified.

BidirectionalBifurcateCoordinate(T) ,

BifurcateCoordinate(T)

∧ has predecessor : T → bool

∧ (∀i ∈ T)¬empty(i)⇒ has predecessor(i) is defined

∧ predecessor : T → T

∧ (∀i ∈ T) has left successor(i)⇒
predecessor(left successor(i)) is defined and equals i

∧ (∀i ∈ T) has right successor(i)⇒
predecessor(right successor(i)) is defined and equals i

∧ (∀i ∈ T) has predecessor(i)⇒
is left successor(i)∨ is right successor(i)

where is left successor and is right successor are defined as follows:

template<typename T>

requires(BidirectionalBifurcateCoordinate(T))

bool is_left_successor(T j)

{

// Precondition: has predecessor(j)

T i = predecessor(j);

return has_left_successor(i) && left_successor(i) == j;

}
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template<typename T>

requires(BidirectionalBifurcateCoordinate(T))

bool is_right_successor(T j)

{

// Precondition: has predecessor(j)

T i = predecessor(j);

return has_right_successor(i) && right_successor(i) == j;

}

Lemma 7.2 If x and y are bidirectional bifurcate coordinates,

left successor(x) = left successor(y)⇒ x = y

left successor(x) = right successor(y)⇒ x = y

right successor(x) = right successor(y)⇒ x = y

Exercise 7.1 Would the existence of a coordinate x such that

is left successor(x)∧ is right successor(x)

contradict the axioms of bidirectional bifurcate coordinates?

traverse nonempty visits each coordinate three times, whether or not it

has successors; maintaining this invariant makes the traversal uniform. The

three visits to a coordinate always occur in the same order (pre, in, post),

so given a current coordinate and the visit just performed on it, we can

determine the next coordinate and the next state, using only the information

from the coordinate and its predecessor. These considerations lead us to an

iterative constant-space algorithm for traversing a tree with bidirectional

bifurcate coordinates. The traversal depends on a machine—a sequence of

statements used as a component of many algorithms:

template<typename C>

requires(BidirectionalBifurcateCoordinate(C))

int traverse_step(visit& v, C& c)

{

// Precondition: has predecessor(c)∨ v 6= post
switch (v) {

case pre:

if (has_left_successor(c)) {

c = left_successor(c); return 1;

} v = in; return 0;
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case in:

if (has_right_successor(c)) {

v = pre; c = right_successor(c); return 1;

} v = post; return 0;

case post:

if (is_left_successor(c))

v = in;

c = predecessor(c); return -1;

}

}

The value returned by the procedure is the change in height. An algo-

rithm based on traverse step uses a loop that terminates when the original

coordinate is reached on the final (post) visit:

template<typename C>

requires(BidirectionalBifurcateCoordinate(C))

bool reachable(C x, C y)

{

// Precondition: tree(x)

if (empty(x)) return false;

C root = x;

visit v = pre;

do {

if (x == y) return true;

traverse_step(v, x);

} while (x != root || v != post);

return false;

}

Lemma 7.3 If reachable returns true, v = pre right before the return.

To compute the weight of a tree, we count the pre visits in a traversal:

template<typename C>

requires(BidirectionalBifurcateCoordinate(C))

WeightType(C) weight(C c)

{

// Precondition: tree(c)

typedef WeightType(C) N;

if (empty(c)) return N(0);
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C root = c;

visit v = pre;

N n(1); // Invariant: n is count of pre visits so far

do {

traverse_step(v, c);

if (v == pre) n = successor(n);

} while (c != root || v != post);

return n;

}

Exercise 7.2 Change weight to count in or post visits instead of pre.

To compute the height of a tree, we need to maintain the current height

and the running maximum:

template<typename C>

requires(BidirectionalBifurcateCoordinate(C))

WeightType(C) height(C c)

{

// Precondition: tree(c)

typedef WeightType(C) N;

if (empty(c)) return N(0);

C root = c;

visit v = pre;

N n(1); // Invariant: n is max of height of pre visits so far

N m(1); // Invariant: m is height of current pre visit

do {

m = (m - N(1)) + N(traverse_step(v, c) + 1);

n = max(n, m);

} while (c != root || v != post);

return n;

}

The extra −1 and +1 are in case WeightType is unsigned. The code

would benefit from an accumulating version of max.

We can define an iterative procedure corresponding to traverse nonempty.

We include a test for the empty tree, since it is not executed on every

recursive call:

template<typename C, typename Proc>

requires(BidirectionalBifurcateCoordinate(C) &&

Procedure(Proc) && Arity(Proc) == 2 &&
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visit == InputType(Proc, 0) &&

C == InputType(Proc, 1))

Proc traverse(C c, Proc proc)

{

// Precondition: tree(c)

if (empty(c)) return proc;

C root = c;

visit v = pre;

proc(pre, c);

do {

traverse_step(v, c);

proc(v, c);

} while (c != root || v != post);

return proc;

}

Exercise 7.3 Use traverse step and the procedures of Chapter 2 to deter-

mine whether the descendants of a bidirectional bifurcate coordinate form

a DAG.

The property readable bounded range for iterators says that for every

iterator in a range, source is defined. An analogous property for bifurcate

coordinates is

property(C : Readable)

requires(BifurcateCoordinate(C))

readable tree : C

x 7→ tree(x)∧ (∀y ∈ C) reachable(x,y)⇒ source(y) is defined

There are two approaches to extending iterator algorithms, such as find

and count, to bifurcate coordinates: implementing specialized versions or

implementing an adapter type.

Project 7.1 Implement versions of algorithms in Chapter 6 for bidirectional

bifurcate coordinates.

Project 7.2 Design an adapter type that, given a bidirectional bifurcate

coordinate type, produces an iterator type that accesses coordinates in a

traversal order (pre, in, or post) specified when an iterator is constructed.
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7.3 Coordinate Structures

So far, we have defined individual concepts, each of which specifies a set of

procedures and their semantics. Occasionally it is useful to define a concept

schema, which is a way of describing some common properties of a family

of concepts. While it is not possible to define an algorithm on a concept

schema, it is possible to describe structures of related algorithms on different

concepts belonging to the same concept schema. For example, we defined

several iterator concepts describing linear traversals and bifurcate coordi-

nate concepts describing traversal of binary trees. To allow traversal within

arbitrary data structures, we introduce a concept schema called coordinate

structures. A coordinate structure may have several interrelated coordinate

types, each with diverse traversal functions. Coordinate structures abstract

the navigational aspects of data structures, whereas composite objects, in-

troduced in Chapter 12, abstract storage management and ownership. Mul-

tiple coordinate structures can describe the same set of objects.

A concept is a coordinate structure if it consists of one or more coordi-

nate types, zero or more value types, one or more traversal functions, and

zero or more access functions. Each traversal function maps one or more

coordinate types and/or value types into a coordinate type, whereas each

access function maps one or more coordinate types and/or value types into

a value type. For example, when considered as a coordinate structure, a

readable indexed iterator has one value type and two coordinate types: the

iterator type and its distance type. The traversal functions are + (adding a

distance to an iterator) and − (giving the distance between two iterators).

There is one access function: source.

7.4 Isomorphism, Equivalence, and Ordering

Two collections of coordinates from the same coordinate structure concept

are isomorphic if they have the same shape. More formally, they are isomor-

phic if there is a one-to-one correspondence between the two collections such

that any valid application of a traversal function to coordinates from the

first collection returns the coordinate corresponding to the same traversal

function applied to the corresponding coordinates from the second collec-

tion.

Isomorphism does not depend on the values of the objects pointed to

by the coordinates: Algorithms for testing isomorphism use only traversal

functions. But isomorphism requires that the same access functions are
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defined, or not defined, for corresponding coordinates. For example, two

bounded or counted ranges are isomorphic if they have the same size. Two

weak ranges of forward iterators are isomorphic if they have the same orbit

structure, as defined in Chapter 2. Two trees are isomorphic when both

are empty; when both are nonempty, isomorphism is determined by the

following code:

template<typename C0, typename C1>

requires(BifurcateCoordinate(C0) &&

BifurcateCoordinate(C1))

bool bifurcate_isomorphic_nonempty(C0 c0, C1 c1)

{

// Precondition: tree(c0)∧ tree(c1)∧ ¬empty(c0)∧ ¬empty(c1)

if (has_left_successor(c0))

if (has_left_successor(c1)) {

if (!bifurcate_isomorphic_nonempty(

left_successor(c0), left_successor(c1)))

return false;

} else return false;

else if (has_left_successor(c1)) return false;

if (has_right_successor(c0))

if (has_right_successor(c1)) {

if (!bifurcate_isomorphic_nonempty(

right_successor(c0), right_successor(c1)))

return false;

} else return false;

else if (has_right_successor(c1)) return false;

return true;

}

Lemma 7.4 For bidirectional bifurcate coordinates, trees are isomorphic

when simultaneous traversals take the same sequence of visits:

template<typename C0, typename C1>

requires(BidirectionalBifurcateCoordinate(C0) &&

BidirectionalBifurcateCoordinate(C1))

bool bifurcate_isomorphic(C0 c0, C1 c1)

{

// Precondition: tree(c0)∧ tree(c1)
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if (empty(c0)) return empty(c1);

if (empty(c1)) return false;

C0 root0 = c0;

visit v0 = pre;

visit v1 = pre;

while (true) {

traverse_step(v0, c0);

traverse_step(v1, c1);

if (v0 != v1) return false;

if (c0 == root0 && v0 == post) return true;

}

}

Chapter 6 contains algorithms for linear and bisection search, depending

on, respectively, equality and total ordering, which are part of the notion of

regularity. By inducing equality and ordering on collections of coordinates

from a coordinate structure, we can search for collections of objects rather

than for individual objects.

Two collections of coordinates from the same readable coordinate struc-

ture concept and with the same value types are equivalent under given equiv-

alence relations (one per value type) if they are isomorphic and if applying

the same access function to corresponding coordinates from the two collec-

tions returns equivalent objects. Replacing the equivalence relations with

the equalities for the value types leads to a natural definition of equality on

collections of coordinates.

Two readable bounded ranges are equivalent if they have the same size

and if corresponding iterators have equivalent values:

template<typename I0, typename I1, typename R>

requires(Readable(I0) && Iterator(I0) &&

Readable(I1) && Iterator(I1) &&

ValueType(I0) == ValueType(I1) &&

Relation(R) && ValueType(I0) == Domain(R))

bool lexicographical_equivalent(I0 f0, I0 l0, I1 f1, I1 l1, R r)

{

// Precondition: readable bounded range(f0, l0)

// Precondition: readable bounded range(f1, l1)

// Precondition: equivalence(r)

pair<I0, I1> p = find_mismatch(f0, l0, f1, l1, r);

return p.m0 == l0 && p.m1 == l1;

}
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It is straightforward to implement lexicographical equal by passing a func-

tion object implementing equality on the value type to lexicographical equivalent:

template<typename T>

requires(Regular(T))

struct equal

{

bool operator()(const T& x, const T& y)

{

return x == y;

}

};

template<typename I0, typename I1>

requires(Readable(I0) && Iterator(I0) &&

Readable(I1) && Iterator(I1) &&

ValueType(I0) == ValueType(I1))

bool lexicographical_equal(I0 f0, I0 l0, I1 f1, I1 l1)

{

return lexicographical_equivalent(f0, l0, f1, l1,

equal<ValueType(I0)>());

}

Two readable trees are equivalent if they are isomorphic and if corre-

sponding coordinates have equivalent values:

template<typename C0, typename C1, typename R>

requires(Readable(C0) && BifurcateCoordinate(C0) &&

Readable(C1) && BifurcateCoordinate(C1) &&

ValueType(C0) == ValueType(C1) &&

Relation(R) && ValueType(C0) == Domain(R))

bool bifurcate_equivalent_nonempty(C0 c0, C1 c1, R r)

{

// Precondition: readable tree(c0)∧ readable tree(c1)

// Precondition: ¬empty(c0)∧ ¬empty(c1)

// Precondition: equivalence(r)

if (!r(source(c0), source(c1))) return false;

if (has_left_successor(c0))

if (has_left_successor(c1)) {

if (!bifurcate_equivalent_nonempty(

left_successor(c0), left_successor(c1), r))
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return false;

} else return false;

else if (has_left_successor(c1)) return false;

if (has_right_successor(c0))

if (has_right_successor(c1)) {

if (!bifurcate_equivalent_nonempty(

right_successor(c0), right_successor(c1), r))

return false;

} else return false;

else if (has_right_successor(c1)) return false;

return true;

}

For bidirectional bifurcate coordinates, trees are equivalent if simultane-

ous traversals take the same sequence of visits and if corresponding coordi-

nates have equivalent values:

template<typename C0, typename C1, typename R>

requires(Readable(C0) &&

BidirectionalBifurcateCoordinate(C0) &&

Readable(C1) &&

BidirectionalBifurcateCoordinate(C1) &&

ValueType(C0) == ValueType(C1) &&

Relation(R) && ValueType(C0) == Domain(R))

bool bifurcate_equivalent(C0 c0, C1 c1, R r)

{

// Precondition: readable tree(c0)∧ readable tree(c1)

// Precondition: equivalence(r)

if (empty(c0)) return empty(c1);

if (empty(c1)) return false;

C0 root0 = c0;

visit v0 = pre;

visit v1 = pre;

while (true) {

if (v0 == pre && !r(source(c0), source(c1)))

return false;

traverse_step(v0, c0);

traverse_step(v1, c1);

if (v0 != v1) return false;

if (c0 == root0 && v0 == post) return true;

}
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}

We can extend a weak (total) ordering to readable ranges of iterators by

using lexicographical ordering, which ignores prefixes of equivalent (equal)

values and considers a shorter range to precede a longer one:

template<typename I0, typename I1, typename R>

requires(Readable(I0) && Iterator(I0) &&

Readable(I1) && Iterator(I1) &&

ValueType(I0) == ValueType(I1) &&

Relation(R) && ValueType(I0) == Domain(R))

bool lexicographical_compare(I0 f0, I0 l0, I1 f1, I1 l1, R r)

{

// Precondition: readable bounded range(f0, l0)

// Precondition: readable bounded range(f1, l1)

// Precondition: weak ordering(r)

while (true) {

if (f1 == l1) return false;

if (f0 == l0) return true;

if (r(source(f0), source(f1))) return true;

if (r(source(f1), source(f0))) return false;

f0 = successor(f0);

f1 = successor(f1);

}

}

It is straightforward to specialize this to lexicographical less by passing

as r a function object capturing < on the value type:

template<typename T>

requires(TotallyOrdered(T))

struct less

{

bool operator()(const T& x, const T& y)

{

return x < y;

}

};

template<typename I0, typename I1>

requires(Readable(I0) && Iterator(I0) &&
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Readable(I1) && Iterator(I1) &&

ValueType(I0) == ValueType(I1))

bool lexicographical_less(I0 f0, I0 l0, I1 f1, I1 l1)

{

return lexicographical_compare(f0, l0, f1, l1,

less<ValueType(I0)>());

}

Exercise 7.4 Explain why, in lexicographical compare, the third and fourth

if statements could be interchanged, but the first and second cannot.

Exercise 7.5 Explain why we did not implement lexicographical compare by

using find mismatch.

We can also extend lexicographical ordering to bifurcate coordinates by

ignoring equivalent rooted subtrees and considering a coordinate without a

left successor to precede a coordinate having a left successor. If the current

values and the left subtrees do not determine the outcome, consider a co-

ordinate without a right successor to precede a coordinate having a right

successor.

Exercise 7.6 Implement bifurcate compare nonempty for readable bifurcate

coordinates.

The readers who complete the preceding exercise will appreciate the sim-

plicity of comparing trees based on bidirectional coordinates and iterative

traversal:

template<typename C0, typename C1, typename R>

requires(Readable(C0) &&

BidirectionalBifurcateCoordinate(C0) &&

Readable(C1) &&

BidirectionalBifurcateCoordinate(C1) &&

ValueType(C0) == ValueType(C1) &&

Relation(R) && ValueType(C0) == Domain(R))

bool bifurcate_compare(C0 c0, C1 c1, R r)

{

// Precondition: readable tree(c0)∧readable tree(c1)∧weak ordering(r)

if (empty(c1)) return false;

if (empty(c0)) return true;

C0 root0 = c0;

visit v0 = pre;

visit v1 = pre;
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while (true) {

if (v0 == pre) {

if (r(source(c0), source(c1))) return true;

if (r(source(c1), source(c0))) return false;

}

traverse_step(v0, c0);

traverse_step(v1, c1);

if (v0 != v1) return v0 > v1;

if (c0 == root0 && v0 == post) return false;

}

}

We can implement bifurcate shape compare by passing the relation that

is always false to bifurcate compare. This allows us to sort a range of trees

and then use upper bound to find an isomorphic tree in logarithmic time.

Project 7.3 Design a coordinate structure for a family of data structures,

and extend isomorphism, equivalence, and ordering to this coordinate struc-

ture.

7.5 Conclusions

Linear structures play a fundamental role in computer science, and itera-

tors provide a natural interface between such structures and the algorithms

working on them. There are, however, nonlinear data structures with their

own nonlinear coordinate structures. Bidirectional bifurcate coordinates

provide an example of iterative algorithms quite different from algorithms

on iterator ranges. We extend the notions of isomorphism, equality, and

ordering to collections of coordinates of different topologies.





Chapter 8

Coordinates with

Mutable Successors

This chapter introduces iterator and coordinate structure concepts that

allow relinking: modifying successor or other traversal functions for a par-

ticular coordinate. Relinking allows us to implement rearrangements, such

as sorting, that preserve the value of source at a coordinate. We introduce

relinking machines that preserve certain structural properties of the coor-

dinates. We conclude with a machine allowing certain traversals of a tree

without the use of a stack or predecessor links, by temporarily relinking the

coordinates during the traversal.

8.1 Linked Iterators

In Chapter 6 we viewed the successor of a given iterator as immutable:

Applying successor to a particular iterator value always returns the same

result. A linked iterator type is a forward iterator type for which a linker

object exists; applying the linker object to an iterator allows the successor

of that iterator to be changed. Such iterators are modeled by linked lists,

where relationships between nodes can be changed. We use linker objects

rather than a single set successor function overloaded on the iterator type

to allow different linkings of the same data structure. For example, doubly

linked lists could be linked by setting both successor and predecessor links

or by setting successor links only. This allows a multipass algorithm to

minimize work by omitting maintenance of the predecessor links until the

131
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final pass. Thus we specify concepts for linked iterators indirectly, in terms

of the corresponding linker objects. Informally, we still speak of linked

iterator types. To define the requirements on linker objects, we define the

following related concepts:

ForwardLinker(S) ,

IteratorType : ForwardLinker → ForwardIterator

∧ Let I = IteratorType(S) in:

(∀s ∈ S) (s : I× I→ void)

∧ (∀s ∈ S) (∀i, j ∈ I) if successor(i) is defined,

then s(i, j) establishes successor(i) = j

BackwardLinker(S) ,

IteratorType : BackwardLinker → BidirectionalIterator

∧ Let I = IteratorType(S) in:

(∀s ∈ S) (s : I× I→ void)

∧ (∀s ∈ S) (∀i, j ∈ I) if predecessor(j) is defined,

then s(i, j) establishes i = predecessor(j)

BidirectionalLinker(S) , ForwardLinker(S)∧ BackwardLinker(S)

Two ranges are disjoint if they include no iterator in common. For

half-open bounded ranges, this corresponds to the following:

property(I : Iterator)

disjoint : I× I× I× I
(f0, l0, f1, l1) 7→ (∀i ∈ I)¬(i ∈ [f0, l0)∧ i ∈ [f1, l1))

and similarly for other kinds of ranges. Since linked iterators are itera-

tors, they benefit from all the notions we defined for ranges, but disjointness

and all other properties of ranges can change over time on linked iterators.

It is possible for disjoint ranges of forward iterators with only a forward

linker—singly linked lists—to share the same limit—commonly referred to

as nil .
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8.2 Link Rearrangement

A link rearrangement is an algorithm taking one or more linked ranges,

returning one or more linked ranges, and satisfying the following properties.

• Input ranges (either counted or bounded) are pairwise disjoint.

• Output ranges (either counted or bounded) are pairwise disjoint.

• Every iterator in an input range appears in one of the output ranges.

• Every iterator in an output range appeared in one of the input ranges.

• Every iterator in each output range designates the same object as

before the rearrangement, and this object has the same value.

Note that successor and predecessor relationships that held in the input

ranges may not hold in the output ranges.

A link rearrangement is precedence preserving if, whenever two iterators

i ≺ j in an output range came from the same input range, i ≺ j originally

held in the input range.

Implementing a link rearrangement requires care to satisfy the properties

of disjointness, conservation, and ordering. We proceed by presenting three

short procedures, or machines, each of which performs one step of traversal

or linking, and then composing from these machines link rearrangements for

splitting, combining, and reversing linked ranges. The first two machines

establish or maintain the relationship f = successor(t) between two iterator

objects passed by reference:

template<typename I>

requires(ForwardIterator(I))

void advance_tail(I& t, I& f)

{

// Precondition: successor(f) is defined

t = f;

f = successor(f);

}

template<typename S>

requires(ForwardLinker(S))

struct linker_to_tail
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{

typedef IteratorType(S) I;

S set_link;

linker_to_tail(const S& set_link) : set_link(set_link) { }

void operator()(I& t, I& f)

{

// Precondition: successor(f) is defined

set_link(t, f);

advance_tail(t, f);

}

};

We can use advance tail to find the last iterator in a nonempty bounded

range:1

template<typename I>

requires(ForwardIterator(I))

I find_last(I f, I l)

{

// Precondition: bounded range(f, l)∧ f 6= l
I t;

do

advance_tail(t, f);

while (f != l);

return t;

}

We can use advance tail and linker to tail together to split a range into

two ranges based on the value of a pseudopredicate applied to each iterator.

A pseudopredicate is not necessarily regular, and its result may depend

on its own state as well as its inputs. For example, a pseudopredicate

might ignore its arguments and return alternating false and true values.

The algorithm takes a bounded range of linked iterators, a pseudopredicate

on the linked iterator type, and a linker object. The algorithm returns

a pair of ranges: iterators not satisfying the pseudopredicate and iterators

satisfying it. It is useful to represent these returned ranges as closed bounded

ranges [h, t], where h is the first, or head, iterator, and t is the last, or

tail, iterator. Returning the tail of each range allows the caller to relink

that iterator without having to traverse to it (using find last, for example).

However, either of the returned ranges could be empty, which we represent

1. Observe that find adjacent mismatch forward in Chapter 6 used advance tail implicitly.
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by returning h = t = l, where l is the limit of the input range. The

successor links of the tails of the two returned ranges are not modified by

the algorithm. Here is the algorithm:

template<typename I, typename S, typename Pred>

requires(ForwardLinker(S) && I == IteratorType(S) &&

UnaryPseudoPredicate(Pred) && I == Domain(Pred))

pair< pair<I, I>, pair<I, I> >

split_linked(I f, I l, Pred p, S set_link)

{

// Precondition: bounded range(f, l)

typedef pair<I, I> P;

linker_to_tail<S> link_to_tail(set_link);

I h0 = l; I t0 = l;

I h1 = l; I t1 = l;

if (f == l) goto s4;

if (p(f)) { h1 = f; advance_tail(t1, f); goto s1; }

else { h0 = f; advance_tail(t0, f); goto s0; }

s0: if (f == l) goto s4;

if (p(f)) { h1 = f; advance_tail(t1, f); goto s3; }

else { advance_tail(t0, f); goto s0; }

s1: if (f == l) goto s4;

if (p(f)) { advance_tail(t1, f); goto s1; }

else { h0 = f; advance_tail(t0, f); goto s2; }

s2: if (f == l) goto s4;

if (p(f)) { link_to_tail(t1, f); goto s3; }

else { advance_tail(t0, f); goto s2; }

s3: if (f == l) goto s4;

if (p(f)) { advance_tail(t1, f); goto s3; }

else { link_to_tail(t0, f); goto s2; }

s4: return pair<P, P>(P(h0, t0), P(h1, t1));

}

The procedure is a state machine. The variables t0 and t1 point to the

tails of the two output ranges, respectively. The states correspond to the

following conditions:

s0: successor(t0) = f∧ ¬p(t0)

s1: successor(t1) = f∧ p(t1)

s2: successor(t0) = f∧ ¬p(t0)∧ p(t1)
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s3: successor(t1) = f∧ ¬p(t0)∧ p(t1)

Relinking is necessary only when moving between states s2 and s3. goto

statements from a state to the immediately following state are included for

symmetry.

Lemma 8.1 For each of the ranges [h, t] returned by split linked, h = l ⇔
t = l.

Exercise 8.1 Assuming that one of the ranges (h, t) returned by split linked

is not empty, explain what iterator t points to and what the value of

successor(t) is.

Lemma 8.2 split linked is a precedence-preserving link rearrangement.

We can also use advance tail and linker to tail to implement an algorithm

to combine two ranges into a single range based on a pseudorelation applied

to the heads of the remaining portions of the input ranges. A pseudorelation

is a binary homogeneous pseudopredicate and thus not necessarily regular.

The algorithm takes two bounded ranges of linked iterators, a pseudorelation

on the linked iterator type, and a linker object. The algorithm returns a

triple (f, t, l), where [f, l) is the half-open range of combined iterators, and

t ∈ [f, l) is the last-visited iterator. A subsequent call to find last(t, l) would

return the last iterator in the range, allowing it to be linked to another

range. Here is the algorithm:

template<typename I, typename S, typename R>

requires(ForwardLinker(S) && I == IteratorType(S) &&

PseudoRelation(R) && I == Domain(R))

triple<I, I, I>

combine_linked_nonempty(I f0, I l0, I f1, I l1, R r, S set_link)

{

// Precondition: bounded range(f0, l0)∧ bounded range(f1, l1)

// Precondition: f0 6= l0 ∧ f1 6= l1 ∧ disjoint(f0, l0, f1, l1)

typedef triple<I, I, I> T;

linker_to_tail<S> link_to_tail(set_link);

I h; I t;

if (r(f1, f0)) { h = f1; advance_tail(t, f1); goto s1; }

else { h = f0; advance_tail(t, f0); goto s0; }

s0: if (f0 == l0) goto s2;

if (r(f1, f0)) { link_to_tail(t, f1); goto s1; }

else { advance_tail(t, f0); goto s0; }
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s1: if (f1 == l1) goto s3;

if (r(f1, f0)) { advance_tail(t, f1); goto s1; }

else { link_to_tail(t, f0); goto s0; }

s2: set_link(t, f1); return T(h, t, l1);

s3: set_link(t, f0); return T(h, t, l0);

}

Exercise 8.2 Implement combine linked, allowing for empty inputs. What

value should be returned as the last-visited iterator?

The procedure is also a state machine. The variable t points to the tail

of the output range. The states correspond to the following conditions:

s0: successor(t) = f0 ∧ ¬r(f1, t)

s1: successor(t) = f1 ∧ r(t, f0)

Relinking is necessary only when moving between states s0 and s1.

Lemma 8.3 If a call combine linked nonempty(f0, l0, f1, l1, r, s) returns (h, t, l),

h equals f0 or f1 and, independently, l equals l0 or l1.

Lemma 8.4 When state s2 is reached, t is from the original range [f0, l0),

successor(t) = l0, and f1 6= l1; when state s3 is reached, t is from the

original range [f1, l1), successor(t) = l1, and f0 6= l0.

Lemma 8.5 combine linked nonempty is a precedence-preserving link rear-

rangement.

The third machine links to the head of a list rather than to its tail:

template<typename I, typename S>

requires(ForwardLinker(S) && I == IteratorType(S))

struct linker_to_head

{

S set_link;

linker_to_head(const S& set_link) : set_link(set_link) { }

void operator()(I& h, I& f)

{

// Precondition: successor(f) is defined

IteratorType(S) tmp = successor(f);

set_link(f, h);

h = f;

f = tmp;

}
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};

With this machine, we can reverse a range of iterators:

template<typename I, typename S>

requires(ForwardLinker(S) && I == IteratorType(S))

I reverse_append(I f, I l, I h, S set_link)

{

// Precondition: bounded range(f, l)∧ h /∈ [f, l)

linker_to_head<I, S> link_to_head(set_link);

while (f != l) link_to_head(h, f);

return h;

}

To avoid sharing of proper tails, h should be the beginning of a disjoint

linked list (for a singly linked list, nil is acceptable) or l. While we could

have used l as the initial value for h (thus giving us reverse linked), it is

useful to pass a separate accumulation parameter.

8.3 Applications of Link Rearrangements

Given a predicate on the value type of a linked iterator type, we can use

split linked to partition a range. We need an adapter to convert from a

predicate on values to a predicate on iterators:

template<typename I, typename P>

requires(Readable(I) &&

Predicate(P) && ValueType(I) == Domain(P))

struct predicate_source

{

P p;

predicate_source(const P& p) : p(p) { }

bool operator()(I i)

{

return p(source(i));

}

};

With this adapter, we can partition a range into values not satisfying

the given predicate and those satisfying it:

template<typename I, typename S, typename P>

requires(ForwardLinker(S) && I == IteratorType(S) &&
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UnaryPredicate(P) && ValueType(I) == Domain(P))

pair< pair<I, I>, pair<I, I> >

partition_linked(I f, I l, P p, S set_link)

{

predicate_source<I, P> ps(p);

return split_linked(f, l, ps, set_link);

}

Given a weak ordering on the value type of a linked iterator type, we can

use combine linked nonempty to merge increasing ranges. Again, we need an

adapter to convert from a relation on values to a relation on iterators:

template<typename I0, typename I1, typename R>

requires(Readable(I0) && Readable(I1) &&

ValueType(I0) == ValueType(I1) &&

Relation(R) && ValueType(I0) == Domain(R))

struct relation_source

{

R r;

relation_source(const R& r) : r(r) { }

bool operator()(I0 i0, I1 i1)

{

return r(source(i0), source(i1));

}

};

After combining ranges with this relation, the only remaining work is to

find the last iterator of the combined range and set it to l1:

template<typename I, typename S, typename R>

requires(Readable(I) &&

ForwardLinker(S) && I == IteratorType(S) &&

Relation(R) && ValueType(I) == Domain(R))

pair<I, I> merge_linked_nonempty(I f0, I l0, I f1, I l1,

R r, S set_link)

{

// Precondition: f0 6= l0 ∧ f1 6= l1
// Precondition: increasing range(f0, l0, r)

// Precondition: increasing range(f1, l1, r)

relation_source<I, I, R> rs(r);

triple<I, I, I> t = combine_linked_nonempty(f0, l0, f1, l1,

rs, set_link);
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set_link(find_last(t.m1, t.m2), l1);

return pair<I, I>(t.m0, l1);

}

Lemma 8.6 If [f0, l0) and [f1, l1) are nonempty increasing bounded ranges,

their merge with merge linked nonempty is an increasing bounded range.

Lemma 8.7 If i0 ∈ [f0, l0) and i1 ∈ [f1, l1) are iterators whose values are

equivalent under r, in the merge of these ranges with merge linked nonempty,

i0 ≺ i1.

Given merge linked nonempty, it is straightforward to implement a merge

sort:

template<typename I, typename S, typename R>

requires(Readable(I) &&

ForwardLinker(S) && I == IteratorType(S) &&

Relation(R) && ValueType(I) == Domain(R))

pair<I, I> sort_linked_nonempty_n(I f, DistanceType(I) n,

R r, S set_link)

{

// Precondition: counted range(f,n)∧ n > 0 ∧ weak ordering(r)

typedef DistanceType(I) N;

typedef pair<I, I> P;

if (n == N(1)) return P(f, successor(f));

N h = half_nonnegative(n);

P p0 = sort_linked_nonempty_n(f, h, r, set_link);

P p1 = sort_linked_nonempty_n(p0.m1, n - h, r, set_link);

return merge_linked_nonempty(p0.m0, p0.m1,

p1.m0, p1.m1, r, set_link);

}

Lemma 8.8 sort linked nonempty n is a link rearrangement.

Lemma 8.9 If Jf,nM is a nonempty counted range, sort linked nonempty n

will rearrange it into an increasing bounded range.

A sort on a linked range is stable with respect to a weak ordering r if,

whenever iterators i ≺ j in the input have equivalent values with respect to

r, i ≺ j in the output.

Lemma 8.10 sort linked nonempty n is stable with respect to the supplied

weak ordering r.
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Exercise 8.3 Determine formulas for the worst-case and average number of

applications of the relation and of the linker object in sort linked nonempty n.

While the number of operations performed by sort linked nonempty n is

close to optimal, poor locality of reference limits its usefulness if the linked

structure does not fit into cache memory. In such situations, if extra memory

is available, one should copy the linked list to an array and sort the array.

Sorting a linked range does not depend on predecessor. Maintaining the

invariant:

i = predecessor(successor(i))

requires a number of backward-linking operations proportional to the num-

ber of comparisons. We can avoid extra work by temporarily breaking

the invariant. Suppose that I is a linked bidirectional iterator type, and

that forward linker and backward linker are, respectively, forward and

backward linker objects for I. We can supply forward linker to the sort

procedure—treating the list as singly linked—and then fix up the predecessor

links by applying backward linker to each iterator after the first:

pair<I, I> p = sort_linked_nonempty_n(f, n,

r, forward_linker);

f = p.m0;

while (f != p.m1) {

backward_linker(f, successor(f));

f = successor(f);

}

Exercise 8.4 Implement a precedence-preserving linked rearrangement unique

that takes a linked range and an equivalence relation on the value type of

the iterators and that produces two ranges by moving all except the first

iterator in any adjacent sequence of iterators with equivalent values to a

second range.

8.4 Linked Bifurcate Coordinates

Allowing the modification of successor leads to link-rearrangement algo-

rithms, such as combining and splitting. It is useful to have mutable traver-

sal functions for other coordinate structures. We illustrate the idea with

linked bifurcate coordinates.

For linked iterators, we passed the linking operation as a parameter be-

cause of the need to use different linking operations: for example, when
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restoring backward links after sort. For linked bifurcate coordinates, there

does not appear to be a need for alternative versions of the linking opera-

tions, so we define them in the concept:

LinkedBifurcateCoordinate(T) ,

BifurcateCoordinate(T)

∧ set left successor : T × T → void

(i, j) 7→ establishes left successor(i) = j

∧ set right successor : T × T → void

(i, j) 7→ establishes right successor(i) = j

The definition space for set left successor and set right successor is the

set of nonempty coordinates.

Trees constitute a rich set of possible data structures and algorithms.

To conclude this chapter, we show a small set of algorithms to demonstrate

an important programming technique. This technique, called link reversal,

modifies links as the tree is traversed, restoring the original state after a

complete traversal while requiring only constant additional space. Link re-

versal requires additional axioms that allow dealing with empty coordinates:

ones on which the traversal functions are not defined:

EmptyLinkedBifurcateCoordinate(T) ,

LinkedBifurcateCoordinate(T)

∧ empty(T())2

∧ ¬empty(i)⇒
left successor(i) and right successor(i) are defined

∧ ¬empty(i)⇒
(¬has left successor(i)⇔ empty(left successor(i)))

∧ ¬empty(i)⇒
(¬has right successor(i)⇔ empty(right successor(i)))

traverse step from Chapter 7 is an efficient way to traverse via bidirec-

tional bifurcating coordinates but requires the predecessor function. When

the predecessor function is not available and recursive (stack-based) traver-

sal is unacceptable because of unbalanced trees, link reversal can be used to

temporarily store the link to the predecessor in a link normally containing

a successor, thus ensuring that there is a path back to the root.3

2. In other words, empty is true on the default constructed value and possibly on other

values as well.
3. Link reversal was introduced in Schorr and Waite [1967] and was independently dis-

covered by L. P. Deutsch. A version without tag bits was published in Robson [1973] and
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If we consider the left and right successors of a tree node together with

the coordinate of a previous tree node as constituting a triple, we can per-

form a rotation of the three members of the triple with this machine:

template<typename C>

requires(EmptyLinkedBifurcateCoordinate(C))

void tree_rotate(C& curr, C& prev)

{

// Precondition: ¬empty(curr)

C tmp = left_successor(curr);

set_left_successor(curr, right_successor(curr));

set_right_successor(curr, prev);

if (empty(tmp)) { prev = tmp; return; }

prev = curr;

curr = tmp;

}

Repeated applications of tree rotate allow traversal of an entire tree:

template<typename C, typename Proc>

requires(EmptyLinkedBifurcateCoordinate(C) &&

Procedure(Proc) && Arity(Proc) == 1 &&

C == InputType(Proc, 0))

Proc traverse_rotating(C c, Proc proc)

{

// Precondition: tree(c)

if (empty(c)) return proc;

C curr = c;

C prev;

do {

proc(curr);

tree_rotate(curr, prev);

} while (curr != c);

do {

proc(curr);

tree_rotate(curr, prev);

} while (curr != c);

proc(curr);

tree_rotate(curr, prev);

Morris [1979]. We show the particular technique of rotating the links due to Lindstrom

[1973] and independently by Dwyer [1974].
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return proc;

}

Theorem 8.1 Consider a call of traverse rotating(c,proc) and any nonempty

descendant i of c, where i has initial left and right successors l and r and

predecessor p. Then

1. The left and right successors of i go through three transitions:

(l, r)
pre→ (r,p)

in→ (p, l)
post→ (l, r)

2. If nl and nr are the weights of l and r, the transitions (r,p)
in→ (p, l)

and (p, l)
post→ (l, r) take 3nl + 1 and 3nr + 1 calls of tree rotate,

respectively.

3. If k is a running count of the calls of tree rotate, the value of k mod 3

is distinct for each of the three transitions of the successors of i.

4. During the call of traverse rotating(c,proc), the total number of calls

of tree rotate is 3n, where n is the weight of c.

Proof. By induction on n, the weight of c.

Exercise 8.5 Draw diagrams of each state of the traversal by traverse rotating

of a complete binary tree with seven nodes.

traverse rotating performs the same sequence of preorder, inorder, and

postorder visits as traverse nonempty from Chapter 7. Unfortunately, we do

not know how to determine whether a particular visit to a coordinate is

the pre, in, or post visit. There are still useful things we can compute with

traverse rotating, such as the weight of a tree:

template<typename T, typename N>

requires(Integer(N))

struct counter

{

N n;

counter() : n(0) { }

counter(N n) : n(n) { }

void operator()(const T&) { n = successor(n); }

};

template<typename C>
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requires(EmptyLinkedBifurcateCoordinate(C))

WeightType(C) weight_rotating(C c)

{

// Precondition: tree(c)

typedef WeightType(C) N;

return traverse_rotating(c, counter<C, N>()).n / N(3);

}

We can also arrange to visit each coordinate exactly once by counting

visits modulo 3:

template<typename N, typename Proc>

requires(Integer(N) &&

Procedure(Proc) && Arity(Proc) == 1)

struct phased_applicator

{

N period;

N phase;

N n;

// Invariant: n,phase ∈ [0,period)

Proc proc;

phased_applicator(N period, N phase, N n, Proc proc) :

period(period), phase(phase), n(n), proc(proc) { }

void operator()(InputType(Proc, 0) x)

{

if (n == phase) proc(x);

n = successor(n);

if (n == period) n = 0;

}

};

template<typename C, typename Proc>

requires(EmptyLinkedBifurcateCoordinate(C) &&

Procedure(Proc) && Arity(Proc) == 1 &&

C == InputType(Proc, 0))

Proc traverse_phased_rotating(C c, int phase, Proc proc)

{

// Precondition: tree(c)∧ 0 6 phase < 3

phased_applicator<int, Proc> applicator(3, phase, 0, proc);

return traverse_rotating(c, applicator).proc;
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}

Project 8.1 Consider using tree rotate to implement isomorphism, equiva-

lence, and ordering on binary trees.

8.5 Conclusions

Linked coordinate structures with mutable traversal functions allow useful

rearrangement algorithms, such as sorting linked ranges. Systematic com-

position of such algorithms from simple machinelike components leads to

efficient code with precise mathematical properties. Disciplined use of goto

is a legitimate way of implementing state machines. Invariants involving

more than one object may be temporarily violated during an update of one

of the objects. An algorithm defines a scope inside which invariants may be

broken as long as they are restored before the scope is exited.



Chapter 9

Copying

This chapter introduces writable iterators, whose access functions allow

the value of iterators to be modified. We illustrate the use of writable itera-

tors with a family of copy algorithms constructed from simple machines that

copy one object and update the input and output iterators. Careful speci-

fication of preconditions allows input and output ranges to overlap during

copying. When two nonoverlapping ranges of the same size are mutable, a

family of swapping algorithms can be used to exchange their contents.

9.1 Writability

This chapter discusses the second kind of access to iterators and other coor-

dinate structures: writability. A type is writable if a unary procedure sink is

defined on it; sink can only be used on the left side of an assignment whose

right side evaluates to an object of ValueType(T):

Writable(T) ,

ValueType : Writable → Regular

∧ (∀x ∈ T) (∀v ∈ ValueType(T)) sink(x)← v is a well-formed statement

The only use of sink(x) justified by the concept Writable is on the left side

of an assignment. Of course, other uses may be supported by a particular

type modeling Writable.

sink does not have to be total; there may be objects of a writable type

on which sink is not defined. As with readability, the concept does not

provide a definition-space predicate to determine whether sink is defined for

147
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a particular object. Validity of its use in an algorithm must be derivable

from preconditions.

For a particular state of an object x, only a single assignment to sink(x)

can be justified by the concept Writable; a specific type might provide a

protocol allowing subsequent assignments to sink(x).1

A writable object x and a readable object y are aliased if sink(x) and

source(y) are both defined and if assigning any value v to sink(x) causes it

to appear as the value of source(y):

property(T : Writable,U : Readable)

requires(ValueType(T) = ValueType(U))

aliased : T ×U
(x,y) 7→ sink(x) is defined ∧

source(y) is defined ∧

(∀v ∈ ValueType(T)) sink(x)← v establishes source(y) = v

The final kind of access is mutability, which combines readability and

writability in a consistent way:

Mutable(T) ,

Readable(T)∧ Writable(T)

∧ (∀x ∈ T) sink(x) is defined⇔ source(x) is defined

∧ (∀x ∈ T) sink(x) is defined⇒ aliased(x, x)

∧ deref : T → ValueType(T)&

∧ (∀x ∈ T) sink(x) is defined⇔ deref(x) is defined

For a mutable iterator, replacing source(x) or sink(x) with deref(x) does not

affect a program’s meaning or performance.

A range of iterators from a type modeling Writable and Iterator is

writable if sink is defined on all the iterators in the range:

property(I : Writable)

requires(Iterator(I))

writable bounded range : I× I
(f, l) 7→ bounded range(f, l)∧ (∀i ∈ [f, l)) sink(i) is defined

writable weak range and writable counted range are defined similarly.

With a readable iterator i, source(i) may be called more than once and

always returns the same value: It is regular. This allows us to write sim-

ple, useful algorithms, such as find if. With a writable iterator j, however,

1. Jerry Schwarz suggests a potentially more elegant interface: replacing sink with a pro-

cedure store such that store(v,x) is equivalent to sink(x)← v.
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assignment to sink(j) is not repeatable: A call to successor must separate

two assignments through an iterator. The asymmetry between readable and

writable iterators is intentional: It does not seem to eliminate useful algo-

rithms, and it allows models, such as output streams, that are not buffered.

Nonregular successor in the Iterator concept and nonregular sink enable al-

gorithms to be used with input and output streams and not just in-memory

data structures.

A range of iterators from a type modeling Mutable and ForwardIterator

is mutable if sink, and thus source and deref, are defined on all the iterators

in the range. Only multipass algorithms both read from and write to the

same range. Thus for mutable ranges we require at least forward iterators

and we drop the requirement that two assignments to an iterator must be

separated by a call to successor:

property(I : Mutable)

requires(ForwardIterator(I))

mutable bounded range : I× I
(f, l) 7→ bounded range(f, l)∧ (∀i ∈ [f, l)) sink(i) is defined

mutable weak range and mutable counted range are defined similarly.

9.2 Position-Based Copying

We present a family of algorithms for copying objects from one or more

input ranges to one or more output ranges. In general, the postconditions

of these algorithms specify equality between objects in output ranges and

the original values of objects in input ranges. When input and output ranges

do not overlap, it is straightforward to establish the desired postcondition.

It is, however, often useful to copy objects between overlapping ranges, so

the precondition of each algorithm specifies what kind of overlap is allowed.

The basic rule for overlap is that if an iterator within an input range

is aliased with an iterator within an output range, the algorithm may not

apply source to the input iterator after applying sink to the output iterator.

We develop precise conditions, and general properties to express them, as

we present the algorithms.

The machines from which we compose the copying algorithms all take

two iterators by reference and are responsible for both copying and updating

the iterators. The most frequently used machine copies one object and then

increments both iterators:
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template<typename I, typename O>

requires(Readable(I) && Iterator(I) &&

Writable(O) && Iterator(O) &&

ValueType(I) == ValueType(O))

void copy_step(I& f_i, O& f_o)

{

// Precondition: source(fi) and sink(fo) are defined

sink(f_o) = source(f_i);

f_i = successor(f_i);

f_o = successor(f_o);

}

The general form of the copy algorithms is to perform a copying step

until the termination condition is satisfied. For example, copy copies a half-

open bounded range to an output range specified by its first iterator:

template<typename I, typename O>

requires(Readable(I) && Iterator(I) &&

Writable(O) && Iterator(O) &&

ValueType(I) == ValueType(O))

O copy(I f_i, I l_i, O f_o)

{

// Precondition: not overlapped forward(fi, li, fo, fo + (li − fi))

while (f_i != l_i) copy_step(f_i, f_o);

return f_o;

}

copy returns the limit of the output range because it might not be known

to the caller. The output iterator type might not allow multiple traversals,

in which case if the limit were not returned, it would not be recoverable.

The postcondition for copy is that the sequence of values in the output

range is equal to the original sequence of values in the input range. In order

to satisfy this postcondition, the precondition must ensure readability and

writability, respectively, of the input and output ranges; sufficient size of the

output range; and, if the input and output ranges overlap, that no input

iterator is read after an aliased output iterator is written. These conditions

are formalized with the help of the property not overlapped forward. A read-

able range and a writable range are not overlapped forward if any aliased

iterators occur at an index within the input range that does not exceed the

index in the output range:
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property(I : Readable,O : Writable)

requires(Iterator(I)∧ Iterator(O))

not overlapped forward : I× I×O×O
(fi, li, fo, lo) 7→

readable bounded range(fi, li)∧

writable bounded range(fo, lo)∧

(∀ki ∈ [fi, li))(∀ko ∈ [fo, lo))

aliased(ko,ki)⇒ ki − fi 6 ko − fo

Sometimes, the sizes of the input and output ranges may be different:

template<typename I, typename O>

requires(Readable(I) && Iterator(I) &&

Writable(O) && Iterator(O) &&

ValueType(I) == ValueType(O))

pair<I, O> copy_bounded(I f_i, I l_i, O f_o, O l_o)

{

// Precondition: not overlapped forward(fi, li, fo, lo)

while (f_i != l_i && f_o != l_o) copy_step(f_i, f_o);

return pair<I, O>(f_i, f_o);

}

While the ends of both ranges are known to the caller, returning the pair

allows the caller to determine which range is smaller and where in the larger

range copying stopped. Compared to copy, the output precondition is weak-

ened: The output range could be shorter than the input range. One could

even argue that the weakest precondition should be

not overlapped forward(fi, fi + n, fo, fo + n)

where n = min(li − fi, lo − fo).

This auxiliary machine handles the termination condition for counted

ranges:

template<typename N>

requires(Integer(N))

bool count_down(N& n)

{

// Precondition: n > 0

if (zero(n)) return false;

n = predecessor(n);
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return true;

}

copy n copies a half-open counted range to an output range specified by

its first iterator:

template<typename I, typename O, typename N>

requires(Readable(I) && Iterator(I) &&

Writable(O) && Iterator(O) &&

ValueType(I) == ValueType(O) &&

Integer(N))

pair<I, O> copy_n(I f_i, N n, O f_o)

{

// Precondition: not overlapped forward(fi, fi + n, fo, fo + n)

while (count_down(n)) copy_step(f_i, f_o);

return pair<I, O>(f_i, f_o);

}

The effect of copy bounded for two counted ranges is obtained by calling

copy n with the minimum of the two sizes.

When ranges overlap forward, it still is possible to copy if the iterator

types model BidirectionalIterator and thus allow backward movement. That

leads to the next machine:

template<typename I, typename O>

requires(Readable(I) && BidirectionalIterator(I) &&

Writable(O) && BidirectionalIterator(O) &&

ValueType(I) == ValueType(O))

void copy_backward_step(I& l_i, O& l_o)

{

// Precondition: source(predecessor(li)) and sink(predecessor(lo))

// are defined

l_i = predecessor(l_i);

l_o = predecessor(l_o);

sink(l_o) = source(l_i);

}

Since we deal with half-open ranges and start at the limit, we need to

decrement before copying, which leads to copy backward:
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template<typename I, typename O>

requires(Readable(I) && BidirectionalIterator(I) &&

Writable(O) && BidirectionalIterator(O) &&

ValueType(I) == ValueType(O))

O copy_backward(I f_i, I l_i, O l_o)

{

// Precondition: not overlapped backward(fi, li, lo − (li − fi), lo)

while (f_i != l_i) copy_backward_step(l_i, l_o);

return l_o;

}

copy backward n is similar.

The precondition for copy backward is analogous to copy and is formal-

ized with the help of the property not overlapped backward. A readable

range and a writable range are not overlapped backward if any aliased it-

erators occur at an index from the limit of the input range that does not

exceed the index from the limit of the output range:

property(I : Readable,O : Writable)

requires(Iterator(I)∧ Iterator(O))

not overlapped backward : I× I×O×O
(fi, li, fo, lo) 7→

readable bounded range(fi, li)∧

writable bounded range(fo, lo)∧

(∀ki ∈ [fi, li))(∀ko ∈ [fo, lo))

aliased(ko,ki)⇒ li − ki 6 lo − ko

If either of the ranges is of an iterator type modeling BidirectionalIterator ,

we can reverse the direction of the output range with respect to the input

range by using a machine that moves backward in the output or one that

moves backward in the input:

template<typename I, typename O>

requires(Readable(I) && BidirectionalIterator(I) &&

Writable(O) && Iterator(O) &&

ValueType(I) == ValueType(O))

void reverse_copy_step(I& l_i, O& f_o)

{

// Precondition: source(predecessor(li)) and sink(fo) are defined

l_i = predecessor(l_i);

sink(f_o) = source(l_i);
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f_o = successor(f_o);

}

template<typename I, typename O>

requires(Readable(I) && Iterator(I) &&

Writable(O) && BidirectionalIterator(O) &&

ValueType(I) == ValueType(O))

void reverse_copy_backward_step(I& f_i, O& l_o)

{

// Precondition: source(fi) and sink(predecessor(lo)) are defined

l_o = predecessor(l_o);

sink(l_o) = source(f_i);

f_i = successor(f_i);

}

leading to the following algorithms:

template<typename I, typename O>

requires(Readable(I) && BidirectionalIterator(I) &&

Writable(O) && Iterator(O) &&

ValueType(I) == ValueType(O))

O reverse_copy(I f_i, I l_i, O f_o)

{

// Precondition: not overlapped(fi, li, fo, fo + (li − fi))

while (f_i != l_i) reverse_copy_step(l_i, f_o);

return f_o;

}

template<typename I, typename O>

requires(Readable(I) && Iterator(I) &&

Writable(O) && BidirectionalIterator(O) &&

ValueType(I) == ValueType(O))

O reverse_copy_backward(I f_i, I l_i, O l_o)

{

// Precondition: not overlapped(fi, li, lo − (li − fi), lo)

while (f_i != l_i) reverse_copy_backward_step(f_i, l_o);

return l_o;

}
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reverse copy n and reverse copy backward n are similar.

The postcondition for both reverse copy and reverse copy backward is that

the output range is a reversed copy of the original sequence of values of the

input range. The practical, but not the weakest, precondition is that the

input and output ranges do not overlap, which we formalize with the help

of the property not overlapped. A readable range and a writable range are

not overlapped if they have no aliased iterators in common:

property(I : Readable,O : Writable)

requires(Iterator(I)∧ Iterator(O))

not overlapped : I× I×O×O
(fi, li, fo, lo) 7→

readable bounded range(fi, li)∧

writable bounded range(fo, lo)∧

(∀ki ∈ [fi, li)) (∀ko ∈ [fo, lo))¬aliased(ko,ki)

Exercise 9.1 Find the weakest preconditions for reverse copy and its com-

panion reverse copy backward.

While the main reason to introduce copy backward as well as copy is

to handle ranges that are overlapped in either direction, the reason for

introducing reverse copy backward as well as reverse copy is to allow greater

flexibility in terms of iterator requirements.

9.3 Predicate-Based Copying

The algorithms presented so far copy every object in the input range to the

output range, and their postconditions do not depend on the value of any

iterator. The algorithms in this section take a predicate argument and use

it to control each copying step.

For example, making the copying step conditional on a unary predicate

leads to copy select:

template<typename I, typename O, typename P>

requires(Readable(I) && Iterator(I) &&

Writable(O) && Iterator(O) &&

ValueType(I) == ValueType(O) &&

UnaryPredicate(P) && I == Domain(P))

O copy_select(I f_i, I l_i, O f_t, P p)

{
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// Precondition: not overlapped forward(fi, li, ft, ft + nt)

// where nt is an upper bound for the number of iterators satisfying p

while (f_i != l_i)

if (p(f_i)) copy_step(f_i, f_t);

else f_i = successor(f_i);

return f_t;

}

The worst case for nt is li − fi; the context might ensure a smaller value.

In the most common case, the predicate is applied not to the iterator

but to its value:

template<typename I, typename O, typename P>

requires(Readable(I) && Iterator(I) &&

Writable(O) && Iterator(O) &&

ValueType(I) == ValueType(O) &&

UnaryPredicate(P) && ValueType(I) == Domain(P))

O copy_if(I f_i, I l_i, O f_t, P p)

{

// Precondition: same as for copy select

predicate_source<I, P> ps(p);

return copy_select(f_i, l_i, f_t, ps);

}

In Chapter 8 we presented split linked and combine linked nonempty oper-

ating on linked ranges of iterators. There are analogous copying algorithms:

template<typename I, typename O_f, typename O_t, typename P>

requires(Readable(I) && Iterator(I) &&

Writable(O_f) && Iterator(O_f) &&

Writable(O_t) && Iterator(O_t) &&

ValueType(I) == ValueType(O_f) &&

ValueType(I) == ValueType(O_t) &&

UnaryPredicate(P) && I == Domain(P))

pair<O_f, O_t> split_copy(I f_i, I l_i, O_f f_f, O_t f_t,

P p)

{

// Precondition: see below

while (f_i != l_i)

if (p(f_i)) copy_step(f_i, f_t);
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else copy_step(f_i, f_f);

return pair<O_f, O_t>(f_f, f_t);

}

Exercise 9.2 Write the postcondition for split copy.

To satisfy its postcondition, a call of split copy must ensure that the two

output ranges do not overlap at all. It is permissible for either of the output

ranges to overlap the input range as long as they do not overlap forward.

This results in the following precondition:

not write overlapped(ff,nf, ft,nt)∧

((not overlapped forward(fi, li, ff, ff + nf)∧ not overlapped(fi, li, ft, lt))∨

(not overlapped forward(fi, li, ft, ft + nt)∧ not overlapped(fi, li, ff, lf)))

where nf and nt are upper bounds for the number of iterators not satisfying

and satisfying p, respectively.

The definition of the property not write overlapped depends on the notion

of write aliasing: two writable objects x and y such that sink(x) and sink(y)

are both defined, and any observer of the effect of writes to x also observes

the effect of writes to y:

property(T : Writable,U : Writable)

requires(ValueType(T) = ValueType(U))

write aliased : T ×U
(x,y) 7→ sink(x) is defined ∧ sink(y) is defined ∧

(∀V ∈ Readable) (∀v ∈ V) aliased(x, v)⇔ aliased(y, v)

That leads to the definition of not write overlapped, or writable ranges

that have no aliased sinks in common:

property(O0 : Writable,O1 : Writable)

requires(Iterator(O0)∧ Iterator(O1))

not write overlapped : O0 ×O0 ×O1 ×O1

(f0, l0, f1, l1) 7→
writable bounded range(f0, l0)∧

writable bounded range(f1, l1)∧

(∀k0 ∈ [f0, l0))(∀k1 ∈ [f1, l1))¬write aliased(k0,k1)

As with select copy, the predicate in the most common case of split copy

is applied not to the iterator but to its value:2

2. The interface was suggested to us by T. K. Lakshman.
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template<typename I, typename O_f, typename O_t, typename P>

requires(Readable(I) && Iterator(I) &&

Writable(O_f) && Iterator(O_f) &&

Writable(O_t) && Iterator(O_t) &&

ValueType(I) == ValueType(O_f) &&

ValueType(I) == ValueType(O_t) &&

UnaryPredicate(P) && ValueType(I) == Domain(P))

pair<O_f, O_t> partition_copy(I f_i, I l_i, O_f f_f, O_t f_t,

P p)

{

// Precondition: same as split copy

predicate_source<I, P> ps(p);

return split_copy(f_i, l_i, f_f, f_t, ps);

}

The values of each of the two output ranges are in the same relative order

as in the input range; partition copy n is similar.

The code for combine copy is equally simple:

template<typename I0, typename I1, typename O, typename R>

requires(Readable(I0) && Iterator(I0) &&

Readable(I1) && Iterator(I1) &&

Writable(O) && Iterator(O) &&

BinaryPredicate(R) &&

ValueType(I0) == ValueType(O) &&

ValueType(I1) == ValueType(O) &&

I0 == InputType(R, 1) && I1 == InputType(R, 0))

O combine_copy(I0 f_i0, I0 l_i0, I1 f_i1, I1 l_i1, O f_o, R r)

{

// Precondition: see below

while (f_i0 != l_i0 && f_i1 != l_i1)

if (r(f_i1, f_i0)) copy_step(f_i1, f_o);

else copy_step(f_i0, f_o);

return copy(f_i1, l_i1, copy(f_i0, l_i0, f_o));

}

For combine copy, read overlap between the input ranges is acceptable. Fur-

thermore, it is permissible for one of the input ranges to overlap with the

output range, but such overlap cannot be in the forward direction and must

be offset in the backward direction by at least the size of the other input
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range, as described by the property backward offset used in the precondition

of combine copy:

(backward offset(fi0 , li0 , fo, lo, li1 − fi1)∧ not overlapped(fi1 , li1 , fo, lo))∨

(backward offset(fi1 , li1 , fo, lo, li0 − fi0)∧ not overlapped(fi0 , li0 , fo, lo))

where lo = fo + (li0 − fi0) + (li1 − fi1) is the limit of the output range.

The property backward offset is satisfied by a readable range, a writable

range, and an offset n > 0 if any aliased iterators occur at an index within

the input range that, when increased by n, does not exceed the index in the

output range:

property(I : Readable,O : Writable,N : Integer)

requires(Iterator(I)∧ Iterator(O))

backward offset : I× I×O×O×N
(fi, li, fo, lo,n) 7→

readable bounded range(fi, li)∧

n > 0 ∧

writable bounded range(fo, lo)∧

(∀ki ∈ [fi, li))(∀ko ∈ [fo, lo))

aliased(ko,ki)⇒ ki − fi + n 6 ko − fo

Note that

not overlapped forward(fi, li, fo, lo) = backward offset(fi, li, fo, lo, 0)

Exercise 9.3 Write the postcondition for combine copy, and prove that it

is satisfied whenever the precondition holds.

combine copy backward is similar. To ensure that the same postcondi-

tion holds, the order of the if clauses must be reversed from the order in

combine copy:

template<typename I0, typename I1, typename O, typename R>

requires(Readable(I0) && BidirectionalIterator(I0) &&

Readable(I1) && BidirectionalIterator(I1) &&

Writable(O) && BidirectionalIterator(O) &&

BinaryPredicate(R) &&

ValueType(I0) == ValueType(O) &&

ValueType(I1) == ValueType(O) &&

I0 == InputType(R, 1) && I1 == InputType(R, 0))
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O combine_copy_backward(I0 f_i0, I0 l_i0, I1 f_i1, I1 l_i1,

O l_o, R r)

{

// Precondition: see below

while (f_i0 != l_i0 && f_i1 != l_i1) {

if (r(predecessor(l_i1), predecessor(l_i0)))

copy_backward_step(l_i0, l_o);

else

copy_backward_step(l_i1, l_o);

}

return copy_backward(f_i0, l_i0,

copy_backward(f_i1, l_i1, l_o));

}

The precondition for combine copy backward is

(forward offset(fi0 , li0 , fo, lo, li1 − fi1)∧ not overlapped(fi1 , li1 , fo, lo))∨

(forward offset(fi1 , li1 , fo, lo, li0 − fi0)∧ not overlapped(fi0 , li0 , fo, lo))

where fo = lo − (li0 − fi0) − (li1 − fi1) is the first iterator of the output

range.

The property forward offset is satisfied by a readable range, a writable

range, and an offset n > 0 if any aliased iterators occur at an index from

the limit of the input range that, increased by n, does not exceed the index

from the limit of the output range:

property(I : Readable,O : Writable,N : Integer)

requires(Iterator(I)∧ Iterator(O))

forward offset : I× I×O×O×N
(fi, li, fo, lo,n) 7→

readable bounded range(fi, li)∧

n > 0 ∧

writable bounded range(fo, lo)∧

(∀ki ∈ [fi, li))(∀ko ∈ [fo, lo))

aliased(ko,ki)⇒ li − ki + n 6 lo − ko

Note that not overlapped backward(fi, li, fo, lo) = forward offset(fi, li, fo, lo, 0).

Exercise 9.4 Write the postcondition for combine copy backward, and prove

that it is satisfied whenever the precondition holds.

When the forward and backward combining copy algorithms are passed

a weak ordering on the the value type, they merge increasing ranges:
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template<typename I0, typename I1, typename O, typename R>

requires(Readable(I0) && Iterator(I0) &&

Readable(I1) && Iterator(I1) &&

Writable(O) && Iterator(O) &&

Relation(R) &&

ValueType(I0) == ValueType(O) &&

ValueType(I1) == ValueType(O) &&

ValueType(I0) == Domain(R))

O merge_copy(I0 f_i0, I0 l_i0, I1 f_i1, I1 l_i1, O f_o, R r)

{

// Precondition: in addition to that for combine copy

// weak ordering(r)∧

// increasing range(fi0 , li0 , r)∧ increasing range(fi1 , li1 , r)

relation_source<I1, I0, R> rs(r);

return combine_copy(f_i0, l_i0, f_i1, l_i1, f_o, rs);

}

template<typename I0, typename I1, typename O, typename R>

requires(Readable(I0) && BidirectionalIterator(I0) &&

Readable(I1) && BidirectionalIterator(I1) &&

Writable(O) && BidirectionalIterator(O) &&

Relation(R) &&

ValueType(I0) == ValueType(O) &&

ValueType(I1) == ValueType(O) &&

ValueType(I0) == Domain(R))

O merge_copy_backward(I0 f_i0, I0 l_i0, I1 f_i1, I1 l_i1, O l_o,

R r)

{

// Precondition: in addition to that for combine copy backward

// weak ordering(r)∧

// increasing range(fi0 , li0 , r)∧ increasing range(fi1 , li1 , r)

relation_source<I1, I0, R> rs(r);

return combine_copy_backward(f_i0, l_i0, f_i1, l_i1, l_o,

rs);

}

Exercise 9.5 Implement combine copy n and combine copy backward n with

the appropriate return values.
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Lemma 9.1 If the sizes of the input ranges are n0 and n1, merge copy and

merge copy backward perform n0 + n1 assignments and, in the worst case,

n0 + n1 − 1 comparisons.

Exercise 9.6 Determine the best case and average number of comparisons.

Project 9.1 Modern computing systems include highly optimized library

procedures for copying memory; for example, memmove and memcpy, which

use optimization techniques not discussed in this book. Study the proce-

dures provided on your platform, determine the techniques they use (for

example, loop unrolling and software pipelining), and design abstract pro-

cedures expressing as many of these techniques as possible. What type

requirements and preconditions are necessary for each technique? What

language extensions would allow a compiler full flexibility to carry out these

optimizations?

9.4 Swapping Ranges

Instead of copying one range into another, it is sometimes useful to swap

two ranges of the same size: to exchange the values of objects in correspond-

ing positions. Swapping algorithms are very similar to copying algorithms,

except that assignment is replaced by a procedure that exchanges the values

of objects pointed to by two mutable iterators:

template<typename I0, typename I1>

requires(Mutable(I0) && Mutable(I1) &&

ValueType(I0) == ValueType(I1))

void exchange_values(I0 x, I1 y)

{

// Precondition: deref(x) and deref(y) are defined

ValueType(I0) t = source(x);

sink(x) = source(y);

sink(y) = t;

}

Exercise 9.7 What is the postcondition of exchange values?

Lemma 9.2 The effects of exchange values(i, j) and exchange values(j, i) are

equivalent.

We would like the implementation of exchange values to avoid actually

constructing or destroying any objects but simply to exchange the values of

two objects, so that its cost does not increase with the amount of resources
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owned by the objects. We accomplish this goal in Chapter 12 with a notion

of underlying type.

As with copying, we construct the swapping algorithms from machines

that take two iterators by reference and are responsible for both exchanging

and updating the iterators. One machine exchanges two objects and then

increments both iterators:

template<typename I0, typename I1>

requires(Mutable(I0) && ForwardIterator(I0) &&

Mutable(I1) && ForwardIterator(I1) &&

ValueType(I0) == ValueType(I1))

void swap_step(I0& f0, I1& f1)

{

// Precondition: deref(f0) and deref(f1) are defined

exchange_values(f0, f1);

f0 = successor(f0);

f1 = successor(f1);

}

This leads to the first algorithm, which is analogous to copy:

template<typename I0, typename I1>

requires(Mutable(I0) && ForwardIterator(I0) &&

Mutable(I1) && ForwardIterator(I1) &&

ValueType(I0) == ValueType(I1))

I1 swap_ranges(I0 f0, I0 l0, I1 f1)

{

// Precondition: mutable bounded range(f0, l0)

// Precondition: mutable counted range(f1, l0 − f0)

while (f0 != l0) swap_step(f0, f1);

return f1;

}

The second algorithm is analogous to copy bounded:

template<typename I0, typename I1>

requires(Mutable(I0) && ForwardIterator(I0) &&

Mutable(I1) && ForwardIterator(I1) &&

ValueType(I0) == ValueType(I1))

pair<I0, I1> swap_ranges_bounded(I0 f0, I0 l0, I1 f1, I1 l1)

{

// Precondition: mutable bounded range(f0, l0)
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// Precondition: mutable bounded range(f1, l1)

while (f0 != l0 && f1 != l1) swap_step(f0, f1);

return pair<I0, I1>(f0, f1);

}

The third algorithm is analogous to copy n:

template<typename I0, typename I1, typename N>

requires(Mutable(I0) && ForwardIterator(I0) &&

Mutable(I1) && ForwardIterator(I1) &&

ValueType(I0) == ValueType(I1) &&

Integer(N))

pair<I0, I1> swap_ranges_n(I0 f0, I1 f1, N n)

{

// Precondition: mutable counted range(f0,n)

// Precondition: mutable counted range(f1,n)

while (count_down(n)) swap_step(f0, f1);

return pair<I0, I1>(f0, f1);

}

When the ranges passed to the range-swapping algorithms do not over-

lap, it is apparent that their effect is to exchange the values of objects in

corresponding positions. In the next chapter, we derive the postcondition

for the overlapping case.

Reverse copying results in a copy in which positions are reversed from

the original; reverse swapping is analogous. It requires a second machine,

which moves backward in the first range and forward in the second range:

template<typename I0, typename I1>

requires(Mutable(I0) && BidirectionalIterator(I0) &&

Mutable(I1) && ForwardIterator(I1) &&

ValueType(I0) == ValueType(I1))

void reverse_swap_step(I0& l0, I1& f1)

{

// Precondition: deref(predecessor(l0)) and deref(f1) are defined

l0 = predecessor(l0);

exchange_values(l0, f1);

f1 = successor(f1);

}

Because of the symmetry of exchange values, reverse swap ranges can be
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used whenever at least one iterator type is bidirectional; no backward ver-

sions are needed:

template<typename I0, typename I1>

requires(Mutable(I0) && BidirectionalIterator(I0) &&

Mutable(I1) && ForwardIterator(I1) &&

ValueType(I0) == ValueType(I1))

I1 reverse_swap_ranges(I0 f0, I0 l0, I1 f1)

{

// Precondition: mutable bounded range(f0, l0)

// Precondition: mutable counted range(f1, l0 − f0)

while (f0 != l0) reverse_swap_step(l0, f1);

return f1;

}

template<typename I0, typename I1>

requires(Mutable(I0) && BidirectionalIterator(I0) &&

Mutable(I1) && ForwardIterator(I1) &&

ValueType(I0) == ValueType(I1))

pair<I0, I1>reverse_swap_ranges_bounded(I0 f0, I0 l0,

I1 f1, I1 l1)

{

// Precondition: mutable bounded range(f0, l0)

// Precondition: mutable bounded range(f1, l1)

while (f0 != l0 && f1 != l1)

reverse_swap_step(l0, f1);

return pair<I0, I1>(l0, f1);

}

template<typename I0, typename I1, typename N>

requires(Mutable(I0) && BidirectionalIterator(I0) &&

Mutable(I1) && ForwardIterator(I1) &&

ValueType(I0) == ValueType(I1) &&

Integer(N))

pair<I0, I1> reverse_swap_ranges_n(I0 l0, I1 f1, N n)

{

// Precondition: mutable counted range(l0 − n,n)

// Precondition: mutable counted range(f1,n)
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while (count_down(n)) reverse_swap_step(l0, f1);

return pair<I0, I1>(l0, f1);

}

9.5 Conclusions

Extending an iterator type with sink leads to writability and mutability.

Although the axiom for sink is simple, the issues of aliasing and of concurrent

updates—which this book does not treat—make imperative programming

complicated. In particular, defining preconditions that deal with aliasing

through different iterator types requires great care. Copying algorithms are

simple, powerful, and widely used. Composing these algorithms from simple

machines helps to organize them into a family by identifying commonalities

and suggesting additional variations. Using value exchange instead of value

assignment leads to an analogous but slightly smaller family of useful range-

swapping algorithms.



Chapter 10

Rearrangements

This chapter introduces the concept of permutation and a taxonomy for

a class of algorithms, called rearrangements, that permute the elements of

a range to satisfy a given postcondition. We provide iterative algorithms

of reverse for bidirectional and random-access iterators, and a divide-and-

conquer algorithm for reverse on forward iterators. We show how to trans-

form divide-and-conquer algorithms to make them run faster when extra

memory is available. We describe three rotation algorithms corresponding

to different iterator concepts, where rotation is the interchange of two adja-

cent ranges of not necessarily equal size. We conclude with a discussion of

how to package algorithms for compile-time selection based on their require-

ments.

10.1 Permutations

A transformation f is an into transformation if, for all x in its definition

space, there exists a y in its definition space such that y = f(x). A trans-

formation f is an onto transformation if, for all y in its definition space,

there exists an x in its definition space such that y = f(x). A transforma-

tion f is a one-to-one transformation if, for all x, x ′ in its definition space,

f(x) = f(x ′)⇒ x = x ′.

Lemma 10.1 A transformation on a finite definition space is an onto trans-

formation if and only if it is both an into and one-to-one transformation.

Exercise 10.1 Find a transformation of the natural numbers that is both

167
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an into and onto transformation but not a one-to-one transformation, and

one that is both an into and one-to-one transformation but not an onto

transformation.

A fixed point of a transformation is an element x such that f(x) = x.

An identity transformation is one that has every element of its definition

space as a fixed point. We denote the identity transformation on a set S as

identityS.

A permutation is an onto transformation on a finite definition space. An

example of a permutation on [0, 6):

p(0) = 5

p(1) = 2

p(2) = 4

p(3) = 3

p(4) = 1

p(5) = 0

If p and q are two permutations on a set S, the composition q ◦ p takes

x ∈ S to q(p(x)).

Lemma 10.2 The composition of permutations is a permutation.

Lemma 10.3 Composition of permutations is associative.

Lemma 10.4 For every permutation p on a set S, there is an inverse per-

mutation p−1 such that p−1 ◦ p = p ◦ p−1 = identityS.

The permutations on a set form a group under composition.

Lemma 10.5 Every finite group is a subgroup of a permutation group of

its elements, where every permutation in the subgroup is generated by mul-

tiplying all the elements by an individual element.

For example, the multiplication group modulo 5 has the following mul-

tiplication table:

× 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

Every row and column of the multiplication table is a permutation. Since

not every one of the 4! = 24 permutations of four elements appears in it,
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the multiplication group modulo 5 is therefore a proper subgroup of the

permutation group of four elements.

A cycle is a circular orbit within a permutation. A trivial cycle is one

with a cycle size of 1; the element in a trivial cycle is a fixed point. A per-

mutation containing a single nontrivial cycle is called a cyclic permutation.

A transposition is a cyclic permutation with a cycle size of 2.

Lemma 10.6 Every element in a permutation belongs to a unique cycle.

Lemma 10.7 Any permutation of a set with n elements contains k 6 n

cycles.

Lemma 10.8 Disjoint cyclic permutations commute.

Exercise 10.2 Show an example of two nondisjoint cyclic permutations

that do not commute.

Lemma 10.9 Every permutation can be represented as a product of the

cyclic permutations corresponding to its cycles.

Lemma 10.10 The inverse of a permutation is the product of the inverses

of its cycles.

Lemma 10.11 Every cyclic permutation is a product of transpositions.

Lemma 10.12 Every permutation is a product of transpositions.

A finite set S of size n is a set for which there exists a pair of functions

chooseS : [0,n)→ S

indexS : S→ [0,n)

satisfying

chooseS(indexS(x)) = x

indexS(chooseS(i)) = i

In other words, S can be put into one-to-one correspondence with a range

of natural numbers.

If p is a permutation on a finite set S of size n, there is a corresponding

index permutation p ′ on [0,n) defined as

p ′(i) = indexS(p(chooseS(i)))

Lemma 10.13 p(x) = chooseS(p
′(indexS(x)))

We will frequently define permutations by the corresponding index per-

mutations.
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10.2 Rearrangements

A rearrangement is an algorithm that copies the objects from an input range

to an output range such that the mapping between the indices of the input

and output ranges is a permutation. This chapter deals with position-based

rearrangements, where the destination of a value depends only on its original

position and not on the value itself. The next chapter deals with predicate-

based rearrangements, where the destination of a value depends only on the

result of applying a predicate to a value, and ordering-based rearrangements,

where the destination of a value depends only on the ordering of values.

In Chapter 8 we studied link rearrangements, such as reverse linked,

where links are modified to establish a rearrangement. In Chapter 9 we

studied copying rearrangements, such as copy and reverse copy. In this and

the next chapter we study mutative rearrangements, where the input and

output ranges are identical.

Every mutative rearrangement corresponds to two permutations: a to-

permutation mapping an iterator i to the iterator pointing to the destination

of the element at i and a from-permutation mapping an iterator i to the

iterator pointing to the origin of the element moved to i.

Lemma 10.14 The to-permutation and from-permutation for a rearrange-

ment are inverses of each other.

If the to-permutation is known, we can rearrange a cycle with this algo-

rithm:

template<typename I, typename F>

requires(Mutable(I) && Transformation(F) && I == Domain(F))

void cycle_to(I i, F f)

{

// Precondition: The orbit of i under f is circular

// Precondition: (∀n ∈ N) deref(fn(i)) is defined

I k = f(i);

while (k != i) {

exchange_values(i, k);

k = f(k);

}

}

After cycle to(i, f), the value of source(f(j)) and the original value of

source(j) are equal for all j in the orbit of i under f. The call performs
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3(n− 1) assignments for a cycle of size n.

Exercise 10.3 Implement a version of cycle to that performs 2n−1 assign-

ments.

If the from-permutation is known, we can rearrange a cycle with this

algorithm:

template<typename I, typename F>

requires(Mutable(I) && Transformation(F) && I == Domain(F))

void cycle_from(I i, F f)

{

// Precondition: The orbit of i under f is circular

// Precondition: (∀n ∈ N) deref(fn(i)) is defined

ValueType(I) tmp = source(i);

I j = i;

I k = f(i);

while (k != i) {

sink(j) = source(k);

j = k;

k = f(k);

}

sink(j) = tmp;

}

After cycle from(i, f), the value of source(j) and the original value of

source(f(j)) are equal for all j in the orbit of i under f. The call performs

n+1 assignments, whereas implementing it with exchange values would per-

form 3(n− 1) assignments. Observe that we require only mutability on the

type I; we do not need any traversal functions, because the transformation

f performs the traversal. In addition to the from-permutation, implement-

ing a mutative rearrangement using cycle from requires a way to obtain a

representative element from each cycle. In some cases the cycle structure

and representatives of the cycles are known.

Exercise 10.4 Implement an algorithm that performs an arbitrary rear-

rangement of a range of indexed iterators. Use an array of n Boolean values

to mark elements as they are placed, and scan this array for an unmarked

value to determine a representative of the next cycle.

Exercise 10.5 Assuming iterators with total ordering, design an algorithm

that uses constant storage to determine whether an iterator is a representa-
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tive for a cycle; use this algorithm to implement an arbitrary rearrangement.

Lemma 10.15 Given a from-permutation, it is possible to perform a muta-

tive rearrangement using n+cN−cT assignments, where n is the number of

elements, cN the number of nontrivial cycles, and cT the number of trivial

cycles.

10.3 Reverse Algorithms

A simple but useful position-based mutative rearrangement is reversing a

range. This rearrangement is induced by the reverse permutation on a finite

set with n elements, which is defined by the index permutation

p(i) = (n− 1) − i

Lemma 10.16 The number of nontrivial cycles in a reverse permutation is

bn/2c; the number of trivial cycles is n mod 2.

Lemma 10.17 bn/2c is the largest possible number of nontrivial cycles in

a permutation.

The definition of reverse directly gives the following algorithm for in-

dexed iterators:1

template<typename I>

requires(Mutable(I) && IndexedIterator(I))

void reverse_n_indexed(I f, DistanceType(I) n)

{

// Precondition: mutable counted range(f,n)

DistanceType(I) i(0);

n = predecessor(n);

while (i < n) {

// n = (noriginal − 1) − i

exchange_values(f + i, f + n);

i = successor(i);

n = predecessor(n);

}

1. A reverse algorithm could return the range of elements that were not moved: the middle

element when the size of the range is odd or the empty range between the two “middle”

elements when the size of the range is even. We do not know of an example when this

return value is useful and, therefore, return void. Of course, for versions taking a counted

range of forward iterators, it is useful to return the limit.
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}

If the algorithm is used with forward or bidirectional iterators, it per-

forms a quadratic number of iterator increments. For bidirectional iterators,

two tests per iteration are required:

template<typename I>

requires(Mutable(I) && BidirectionalIterator(I))

void reverse_bidirectional(I f, I l)

{

// Precondition: mutable bounded range(f, l)

while (true) {

if (f == l) return;

l = predecessor(l);

if (f == l) return;

exchange_values(f, l);

f = successor(f);

}

}

When the size of the range is known, reverse swap ranges n can be used:

template<typename I>

requires(Mutable(I) && BidirectionalIterator(I))

void reverse_n_bidirectional(I f, I l, DistanceType(I) n)

{

// Precondition: mutable bounded range(f, l)∧ 0 6 n 6 l− f

reverse_swap_ranges_n(l, f, half_nonnegative(n));

}

The order of the first two arguments to reverse swap ranges n is deter-

mined by the fact that it moves backward in the first range. Passing n < l−f

to reverse n bidirectional leaves values in the middle in their original posi-

tions.

When a data structure provides forward iterators, they are sometimes

linked iterators, in which case reverse linked can be used. In other cases

extra buffer memory may be available, allowing the following algorithm to

be used:

template<typename I, typename B>

requires(Mutable(I) && ForwardIterator(I) &&

Mutable(B) && BidirectionalIterator(B) &&

ValueType(I) == ValueType(B))
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I reverse_n_with_buffer(I f_i, DistanceType(I) n, B f_b)

{

// Precondition: mutable counted range(fi,n)

// Precondition: mutable counted range(fb,n)

return reverse_copy(f_b, copy_n(f_i, n, f_b).m1, f_i);

}

reverse n with buffer performs 2n assignments.

We will use this approach of copying to a buffer and back for other

rearrangements.

If no buffer memory is available but logarithmic storage is available as

stack space, a divide-and-conquer algorithm is possible: Split the range

into two parts, reverse each part, and, finally, interchange the parts with

swap ranges n.

Lemma 10.18 Splitting as evenly as possible minimizes the work.

Returning the limit allows us to optimize traversal to the midpoint by

using the technique we call auxiliary computation during recursion:

template<typename I>

requires(Mutable(I) && ForwardIterator(I))

I reverse_n_forward(I f, DistanceType(I) n)

{

// Precondition: mutable counted range(f,n)

typedef DistanceType(I) N;

if (n < N(2)) return f + n;

N h = half_nonnegative(n);

N n_mod_2 = n - twice(h);

I m = reverse_n_forward(f, h) + n_mod_2;

I l = reverse_n_forward(m, h);

swap_ranges_n(f, m, h);

return l;

}

The correctness of reverse n forward depends on the following.

Lemma 10.19 The reverse permutation on [0,n) is the only permutation

satisfying i < j⇒ p(j) < p(i).

This condition obviously holds for ranges of size 1. The recursive calls in-

ductively establish that the condition holds within each half. The condition

between the halves and the skipped middle element, if any, is reestablished

with swap ranges n.
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Lemma 10.20 For a range of length n =
∑blognc
i=0 ai2

i, where ai is the

ith digit in the binary representation of n, the number of assignments is
3
2

∑blognc
i=0 aii2

i.

reverse n forward requires a logarithmic amount of space for the call

stack. A memory-adaptive algorithm uses as much additional space as it

can acquire to maximize performance. A few percent of additional space

gives a large performance improvement. That leads to the following al-

gorithm, which uses divide and conquer and switches to the linear-time

reverse n with buffer whenever the subproblem fits into the buffer:

template<typename I, typename B>

requires(Mutable(I) && ForwardIterator(I) &&

Mutable(B) && BidirectionalIterator(B) &&

ValueType(I) == ValueType(B))

I reverse_n_adaptive(I f_i, DistanceType(I) n_i,

B f_b, DistanceType(I) n_b)

{

// Precondition: mutable counted range(fi,ni)

// Precondition: mutable counted range(fb,nb)

typedef DistanceType(I) N;

if (n_i < N(2))

return f_i + n_i;

if (n_i <= n_b)

return reverse_n_with_buffer(f_i, n_i, f_b);

N h_i = half_nonnegative(n_i);

N n_mod_2 = n_i - twice(h_i);

I m_i = reverse_n_adaptive(f_i, h_i, f_b, n_b) + n_mod_2;

I l_i = reverse_n_adaptive(m_i, h_i, f_b, n_b);

swap_ranges_n(f_i, m_i, h_i);

return l_i;

}

Exercise 10.6 Derive a formula for the number of assignments performed

by reverse n adaptive for given range and buffer sizes.

10.4 Rotate Algorithms

The permutation p of n elements defined by an index permutation p(i) =

(i+ k) mod n is called the k-rotation.
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Lemma 10.21 The inverse of a k-rotation of n elements is an (n − k)-

rotation.

An element with index i is in the cycle

{i, (i+ k) mod n, (i+ 2k) mod n, . . .} = {(i+ uk) mod n}

The length of the cycle is the smallest positive integer m such that

i = (i+mk) mod n

This is equivalent to mk mod n = 0, which shows the length of the cy-

cle to be independent of i. Since m is the smallest positive number such

that mk mod n = 0, lcm(k,n) = mk, where lcm(a,b) is the least common

multiple of a and b. Using the standard identity

lcm(a,b) gcd(a,b) = ab

we obtain that the size of the cycle

m =
lcm(k,n)

k
=

kn

gcd(k,n)k
=

n

gcd(k,n)

The number of cycles, therefore, is gcd(k,n).

Consider two elements in a cycle: (i + uk) mod n and (i + vk) mod n.

The distance between them is

|(i+ uk) mod n− (i+ vk) mod n| = (u− v)k mod n

= (u− v)k− pn

where p = quotient((u − v)k,n). Since both k and n are divisible by

d = gcd(k,n), so is the distance. Therefore the distance between differ-

ent elements in the same cycle is at least d, and elements with indices in

[0,d) belong to disjoint cycles.

k-rotation rearrangement of a range [f, l) is equivalent to interchanging

the relative positions of the values in the subranges [f,m) and [m, l), where

m = f + ((l − f) − k) = l − k. m is a more useful input than k. When

forward or bidirectional iterators are involved, it avoids performing linear-

time operations to compute m from k. Returning the iterator m ′ = f + k

pointing to the new position of the element at f is useful for many other

algorithms.2

2. Joseph Tighe suggests returning a pair, m and m ′, in the order constituting a valid

range; although it is an interesting suggestion and preserves all the information, we do

not yet know of a compelling use of such an interface.
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Lemma 10.22 Rotating a range [f, l) around the iterator m and then ro-

tating it around the returned value m ′ returns m and restores the range to

its original state.

We can use cycle from to implement a k-rotation rearrangement of a

range of indexed or random-access iterators. The to-permutation is p(i) =

(i + k) mod n, and the from-permutation is its inverse: p−1(i) = (i + (n −

k)) mod n, where n − k = m − f. We want to avoid evaluating mod, and

we observe that

p−1(i) =

i+ (n− k) if i < k

i− k if i > k

That leads to the following function object for random-access iterators:

template<typename I>

requires(RandomAccessIterator(I))

struct k_rotate_from_permutation_random_access

{

DistanceType(I) k;

DistanceType(I) n_minus_k;

I m_prime;

k_rotate_from_permutation_random_access(I f, I m, I l) :

k(l - m), n_minus_k(m - f), m_prime(f + (l - m))

{

// Precondition: bounded range(f, l)∧m ∈ [f, l)

}

I operator()(I x)

{

// Precondition: x ∈ [f, l)

if (x < m_prime) return x + n_minus_k;

else return x - k;

}

};

For indexed iterators, the absence of natural ordering and subtraction

of a distance from an iterator costs an extra addition or two:

template<typename I>

requires(IndexedIterator(I))

struct k_rotate_from_permutation_indexed

{

DistanceType(I) k;

DistanceType(I) n_minus_k;
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I f;

k_rotate_from_permutation_indexed(I f, I m, I l) :

k(l - m), n_minus_k(m - f), f(f)

{

// Precondition: bounded range(f, l)∧m ∈ [f, l)

}

I operator()(I x)

{

// Precondition: x ∈ [f, l)

DistanceType(I) i = x - f;

if (i < k) return x + n_minus_k;

else return f + (i - k);

}

};

This procedure rotates every cycle:

template<typename I, typename F>

requires(Mutable(I) && IndexedIterator(I) &&

Transformation(F) && I == Domain(F))

I rotate_cycles(I f, I m, I l, F from)

{

// Precondition: mutable bounded range(f, l)∧m ∈ [f, l]

// Precondition: from is a from-permutation on [f, l)

typedef DistanceType(I) N;

N d = gcd<N, N>(m - f, l - m);

while (count_down(d)) cycle_from(f + d, from);

return f + (l - m);

}

This algorithm was first published in Fletcher and Silver [1966] except

that they used cycle to where we use cycle from. These procedures select

the appropriate function object:

template<typename I>

requires(Mutable(I) && IndexedIterator(I))

I rotate_indexed_nontrivial(I f, I m, I l)

{

// Precondition: mutable bounded range(f, l)∧ f ≺ m ≺ l
k_rotate_from_permutation_indexed<I> p(f, m, l);

return rotate_cycles(f, m, l, p);

}
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template<typename I>

requires(Mutable(I) && RandomAccessIterator(I))

I rotate_random_access_nontrivial(I f, I m, I l)

{

// Precondition: mutable bounded range(f, l)∧ f ≺ m ≺ l
k_rotate_from_permutation_random_access<I> p(f, m, l);

return rotate_cycles(f, m, l, p);

}

The number of assignments is n+ cN − cT = n+ gcd(n,k). Recall that

n is the number of elements, cN the number of nontrivial cycles, and cT the

number of trivial cycles. The expected value of gcd(n,k) for 1 6 n,k 6 m

is 6
π2 lnm+ C + O( lnm√

m
) (see Diaconis and Erdös [2004]).

The following property leads to a rotation algorithm for bidirectional

iterators.

Lemma 10.23 The k-rotation on [0,n) is the only permutation p that

inverts the relative ordering between the subranges [0,n− k) and [n− k,n)

but preserves the relative ordering within each subrange:

1. i < n− k∧ n− k 6 j < n⇒ p(j) < p(i)

2. i < j < n− k∨ n− k 6 i < j⇒ p(i) < p(j)

The reverse rearrangement satisfies condition 1 but not 2. Applying

reverse to subranges [0,n − k) and [n − k,n) and then applying reverse to

the entire range will satisfy both conditions:

reverse_bidirectional(f, m);

reverse_bidirectional(m, l);

reverse_bidirectional(f, l);

Finding the return value m ′ is handled by using reverse swap ranges

bounded:3

template<typename I>

requires(Mutable(I) && BidirectionalIterator(I))

I rotate_bidirectional_nontrivial(I f, I m, I l)

{

// Precondition: mutable bounded range(f, l)∧ f ≺ m ≺ l

3. The use of reverse swap ranges bounded to determinem ′ was suggested to us by Wilson

Ho and Raymond Lo.
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reverse_bidirectional(f, m);

reverse_bidirectional(m, l);

pair<I, I> p = reverse_swap_ranges_bounded(m, l, f, m);

reverse_bidirectional(p.m1, p.m0);

if (m == p.m0) return p.m1;

else return p.m0;

}

Lemma 10.24 The number of assignments is 3(bn/2c+bk/2c+b(n−k)/2c),
which is 3n when both n and k are even and 3(n− 1) otherwise.

Given a range [f, l) and an iterator m in that range, a call

p← swap ranges bounded(f,m,m, l)

sets p to a pair of iterators such that

p.m0 = m∨ p.m1 = l

If p.m0 = m∧ p.m1 = l, we are done. Otherwise [f,p.m0) are in the final

position and, depending on whether p.m0 = m or p.m1 = l, we need to

rotate [p.m0, l) around p.m1 or m, respectively. This immediately leads to

the following algorithm, first published in Gries and Mills [1981]:

template<typename I>

requires(Mutable(I) && ForwardIterator(I))

void rotate_forward_annotated(I f, I m, I l)

{

// Precondition: mutable bounded range(f, l)∧ f ≺ m ≺ l
DistanceType(I) a = m - f;

DistanceType(I) b = l - m;

while (true) {

pair<I, I> p = swap_ranges_bounded(f, m, m, l);

if (p.m0 == m && p.m1 == l) { assert(a == b);

return;

}

f = p.m0;

if (f == m) { assert(b > a);

m = p.m1; b = b - a;

} else { assert(a > b);

a = a - b;

}
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}

}

Lemma 10.25 The first time the else clause is taken, f = m ′, the standard

return value for rotate.

The annotation variables a and b remain equal to the sizes of the

two subranges to be swapped. At the same time, they perform subtrac-

tive gcd of the initial sizes. Each call of exchange values performed by

swap ranges bounded puts one value into its final position, except during the

final call of swap ranges bounded, when each call of exchange values puts two

values into their final positions. Since the final call of swap ranges bounded

performs gcd(n,k) calls of exchange values, the total number of calls to

exchange values is n− gcd(n,k).

The previous lemma suggests one way to implement a complete rotate

forward: Create a second copy of the code that saves a copy of f in the else

clause and then invokes rotate forward annotated to complete the rotation.

This can be transformed into the following two procedures:

template<typename I>

requires(Mutable(I) && ForwardIterator(I))

void rotate_forward_step(I& f, I& m, I l)

{

// Precondition: mutable bounded range(f, l)∧ f ≺ m ≺ l
I c = m;

do {

swap_step(f, c);

if (f == m) m = c;

} while (c != l);

}

template<typename I>

requires(Mutable(I) && ForwardIterator(I))

I rotate_forward_nontrivial(I f, I m, I l)

{

// Precondition: mutable bounded range(f, l)∧ f ≺ m ≺ l
rotate_forward_step(f, m, l);

I m_prime = f;

while (m != l) rotate_forward_step(f, m, l);
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return m_prime;

}

Exercise 10.7 Verify that rotate forward nontrivial rotates [f, l) around m

and returns m ′.

Sometimes, it is useful to partially rotate a range, moving the correct

objects to [f,m ′) but leaving the objects in [m ′, l) in some rearrangement

of the objects originally in [f,m). For example, this can be used to move

undesired objects to the end of a sequence in preparation for erasing them.

We can accomplish this with the following algorithm:

template<typename I>

requires(Mutable(I) && ForwardIterator(I))

I rotate_partial_nontrivial(I f, I m, I l)

{

// Precondition: mutable bounded range(f, l)∧ f ≺ m ≺ l
return swap_ranges(m, l, f);

}

Lemma 10.26 The postcondition for rotate partial nontrivial is that it per-

forms a partial rotation such that the objects in positions [m ′, l) are k-

rotated where k = −(l− f) mod (m− f).

A backward version of rotate partial nontrivial that uses a backward ver-

sion of swap ranges could be useful sometimes.

When extra buffer memory is available, the following algorithm may be

used:

template<typename I, typename B>

requires(Mutable(I) && ForwardIterator(I) &&

Mutable(B) && ForwardIterator(B))

I rotate_with_buffer_nontrivial(I f, I m, I l, B f_b)

{

// Precondition: mutable bounded range(f, l)∧ f ≺ m ≺ l
// Precondition: mutable counted range(fb, l− f)

B l_b = copy(f, m, f_b);

I m_prime = copy(m, l, f);

copy(f_b, l_b, m_prime);

return m_prime;

}
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rotate with buffer nontrivial performs (l−f)+(m−f) assignments, whereas

the following algorithm performs (l−f)+(l−m) assignments. When rotating

a range of bidirectional iterators, the algorithm minimizing the number of

assignments could be chosen, although computing the differences at runtime

requires a linear number of successor operations:

template<typename I, typename B>

requires(Mutable(I) && BidirectionalIterator(I) &&

Mutable(B) && ForwardIterator(B))

I rotate_with_buffer_backward_nontrivial(I f, I m, I l, B f_b)

{

// Precondition: mutable bounded range(f, l)∧ f ≺ m ≺ l
// Precondition: mutable counted range(fb, l− f)

B l_b = copy(m, l, f_b);

copy_backward(f, m, l);

return copy(f_b, l_b, f);

}

10.5 Algorithm Selection

In Section 10.3 we presented reverse algorithms with a variety of iterator

requirements and procedure signatures, including versions taking counted

and bounded ranges. It is worth defining variations that make the most

convenient signatures available for additional iterator types. For example,

an additional constant-time iterator difference leads to the algorithm for

reversing a bounded range of indexed iterators:

template<typename I>

requires(Mutable(I) && IndexedIterator(I))

void reverse_indexed(I f, I l)

{

// Precondition: mutable bounded range(f, l)

reverse_n_indexed(f, l - f);

}

When a range of forward iterators must be reversed, there is usually

enough extra memory available to allow reverse n adaptive to run efficiently.

When the size of the range to be reversed is moderate, it can be obtained in

the usual way (for example, malloc). However, when the size is very large,

there might not be enough available physical memory to allocate a buffer
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of this size. Because algorithms such as reverse n adaptive run efficiently

even when the size of the buffer is small in proportion to the range being

mutated, it is useful for the system to provide a way to allocate a temporary

buffer. The allocation may reserve less memory than requested; in a system

with virtual memory, the allocated memory has physical memory assigned

to it. A temporary buffer is intended for short-term use and is guaranteed

to be returned when the algorithm terminates.

For example, the following algorithm uses a type temporary buffer:

template<typename I>

requires(Mutable(I) && ForwardIterator(I))

void reverse_n_with_temporary_buffer(I f, DistanceType(I) n)

{

// Precondition: mutable counted range(f,n)

temporary_buffer<ValueType(I)> b(n);

reverse_n_adaptive(f, n, begin(b), size(b));

}

The constructor b(n) allocates memory to hold some number m 6 n

adjacent objects of type ValueType(I); size(b) returns the number m, and

begin(b) returns an iterator pointing to the beginning of this range. The

destructor for b deallocates the memory.

For the same problem, there are often different algorithms for different

type requirements. For example, for rotate there are three useful algorithms

for indexed (and random access), bidirectional, and forward iterators. It is

possible to automatically select from a family of algorithms, based on the

requirements the types satisfy. We accomplish this by using a mechanism

known as concept dispatch. We start by defining a top-level dispatch proce-

dure, which in this case also handles trivial rotates:

template<typename I>

requires(Mutable(I) && ForwardIterator(I))

I rotate(I f, I m, I l)

{

// Precondition: mutable bounded range(f, l)∧m ∈ [f, l]

if (m == f) return l;

if (m == l) return f;

return rotate_nontrivial(f, m, l, IteratorConcept(I)());

}

The type function IteratorConcept returns a concept tag type, a type that



10.5 Algorithm Selection 185

encodes the strongest concept modeled by its argument. We then implement

a procedure for each concept tag type:

template<typename I>

requires(Mutable(I) && ForwardIterator(I))

I rotate_nontrivial(I f, I m, I l, forward_iterator_tag)

{

// Precondition: mutable bounded range(f, l)∧ f ≺ m ≺ l
return rotate_forward_nontrivial(f, m, l);

}

template<typename I>

requires(Mutable(I) && BidirectionalIterator(I))

I rotate_nontrivial(I f, I m, I l, bidirectional_iterator_tag)

{

// Precondition: mutable bounded range(f, l)∧ f ≺ m ≺ l
return rotate_bidirectional_nontrivial(f, m, l);

}

template<typename I>

requires(Mutable(I) && IndexedIterator(I))

I rotate_nontrivial(I f, I m, I l, indexed_iterator_tag)

{

// Precondition: mutable bounded range(f, l)∧ f ≺ m ≺ l
return rotate_indexed_nontrivial(f, m, l);

}

template<typename I>

requires(Mutable(I) && RandomAccessIterator(I))

I rotate_nontrivial(I f, I m, I l, random_access_iterator_tag)

{

// Precondition: mutable bounded range(f, l)∧ f ≺ m ≺ l
return rotate_random_access_nontrivial(f, m, l);

}

Concept dispatch does not take into consideration factors other than type

requirements. For example, as summarized in Table 10.1, we can rotate a

range of random-access iterators by using three algorithms, each performing
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Table 10.1: Number of Assignments Performed by Rotate Algorithms

Algorithm Assignments

indexed, random access n+ gcd(n,k)

bidirectional 3n or 3(n− 1)

forward 3(n− gcd(n,k))

with buffer n+ (n− k)

with buffer backward n+ k

partial 3k

where n = l− f and k = l−m

a different number of assignments. When the range fits into cache memory,

the n + gcd(n,k) assignments performed by the random-access algorithm

give us the best performance. But when the range does not fit into cache,

the 3n assignments of the bidirectional algorithm or the 3(n − gcd(n,k))

assignments of the forward algorithm are faster. In this case additional

factors are affecting whether the bidirectional or forward algorithm will

be fastest, including the more regular loop structure of the bidirectional

algorithm, which can make up for the additional assignments it performs,

and details of the processor architecture, such as its cache configuration and

prefetch logic. It should also be noted that the algorithms perform iterator

operations in addition to assignments of the value type; as the size of the

value type gets smaller, the relative cost of these other operations increases.

Project 10.1 Design a benchmark comparing performance of all the algo-

rithms for different array sizes, element sizes, and rotation amounts. Based

on the results of the benchmark, design a composite algorithm that appro-

priately uses one of the rotate algorithms depending on the iterator concept,

size of the range, amount of rotation, element size, cache size, availability

of temporary buffer, and other relevant considerations.

Project 10.2 We have presented two kinds of position-based rearrange-

ment algorithms: reverse and rotate. There are, however, other examples of

such algorithms in the literature. Develop a taxonomy of position-based re-

arrangements, catalog existing algorithms, discover missing algorithms, and

produce a library.
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10.6 Conclusions

The structure of permutations allows us to design and analyze rearrange-

ment algorithms. Even simple problems, such as reverse and rotate, lead to

a variety of useful algorithms. Selecting the appropriate one depends on iter-

ator requirements and system issues. Memory-adaptive algorithms provide

a practical alternative to the theoretical notion of in-place algorithms.





Chapter 11

Partition and Merging

This chapter constructs predicate-based and ordering-based rearrange-

ments from components from previous chapters. After presenting partition

algorithms for forward and bidirectional iterators, we implement a stable

partition algorithm. We then introduce a binary counter mechanism for

transforming bottom-up divide-and-conquer algorithms, such as stable par-

tition, into iterative form. We introduce a stable memory-adaptive merge

algorithm and use it to construct an efficient memory-adaptive stable sort

that works for forward iterators: the weakest concept that allows rearrange-

ments.

11.1 Partition

In Chapter 6 we introduced the notion of a range partitioned by a predicate

together with the fundamental algorithm partition point on such a range.

Now we look at algorithms for converting an arbitrary range into a parti-

tioned range.

Exercise 11.1 Implement an algorithm partitioned at point that checks whether

a given bounded range is partitioned at a specified iterator.

Exercise 11.2 Implement an algorithm potential partition point returning

the iterator where the partition point would occur after partitioning.

Lemma 11.1 If m = potential partition point(f, l,p), then

count if(f,m,p) = count if not(m, l,p)

189
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In other words, the number of misplaced elements on either side of m is the

same.

The lemma gives the minimum number of assignments to partition a

range, 2n + 1, where n is the number of misplaced elements on either side

of m: 2n assignments to misplaced elements and one assignment to a tem-

porary variable.

Lemma 11.2 There are u!v! permutations that partition a range with u

false values and v true values.

A partition rearrangement is stable if the relative order of the elements

not satisfying the predicate is preserved, as is the relative order of the ele-

ments satisfying the predicate.

Lemma 11.3 The result of stable partition is unique.

A partition rearrangement is semistable if the relative order of elements

not satisfying the predicate is preserved. The following algorithm performs

a semistable partition:1

template<typename I, typename P>

requires(Mutable(I) && ForwardIterator(I) &&

UnaryPredicate(P) && ValueType(I) == Domain(P))

I partition_semistable(I f, I l, P p)

{

// Precondition: mutable bounded range(f, l)

I i = find_if(f, l, p);

if (i == l) return i;

I j = successor(i);

while (true) {

j = find_if_not(j, l, p);

if (j == l) return i;

swap_step(i, j);

}

}

The correctness of partition semistable depends on the following three

lemmas.

Lemma 11.4 Before the exit test, none(f, i,p)∧ all(i, j,p).

Lemma 11.5 After the exit test, p(source(i))∧ ¬p(source(j)).

1. Bentley [1984, pages 287–291] attributes the algorithm to Nico Lomuto.
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Lemma 11.6 After the call of swap step, none(f, i,p)∧ all(i, j,p).

Semistability follows from the fact that the swap step call moves an ele-

ment not satisfying the predicate before a range of elements satisfying the

predicate, and therefore the order of elements not satisfying the predicate

does not change.

partition semistable uses only one temporary object, in swap step.

Let n = l − f be the number of elements in the range, and let w be

the number of elements not satisfying the predicate that follow the first

element satisfying the predicate. Then the predicate is applied n times,

exchange values is performed w times, and the number of iterator increments

is n+w.

Exercise 11.3 Rewrite partition semistable, expanding the call of find if not

inline and eliminating the extra test against l.

Exercise 11.4 Give the postcondition of the algorithm that results from re-

placing swap step(i, j) with copy step(j, i) in partition semistable, suggest an

appropriate name, and compare its use with the use of partition semistable.

Let n be the number of elements in a range to be partitioned.

Lemma 11.7 A partition rearrangement that returns the partition point

requires n applications of the predicate.

Lemma 11.8 A partition rearrangement of a nonempty range that does

not return the partition point requires n− 1 applications of the predicate.2

Exercise 11.5 Implement a partition rearrangement for nonempty ranges

that performs n− 1 predicate applications.

Consider a range with one element satisfying the predicate, followed by

n elements not satisfying the predicate. partition semistable will perform n

calls of exchange values, while one suffices. If we combine a forward search

for an element satisfying the predicate with a backward search for an element

not satisfying the predicate, we avoid unnecessary exchanges. The algorithm

requires bidirectional iterators:

template<typename I, typename P>

requires(Mutable(I) && BidirectionalIterator(I) &&

UnaryPredicate(P) && ValueType(I) == Domain(P))

I partition_bidirectional(I f, I l, P p)

{

// Precondition: mutable bounded range(f, l)

2. This lemma and the following exercise were suggested to us by Jon Brandt.
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while (true) {

f = find_if(f, l, p);

l = find_backward_if_not(f, l, p);

if (f == l) return f;

reverse_swap_step(l, f);

}

}

As with partition semistable, partition bidirectional uses only one tempo-

rary object.

Lemma 11.9 The number of times exchange values is performed, v, equals

the number of misplaced elements not satisfying the predicate. The total

number of assignments, therefore, is 3v.

Exercise 11.6 Implement a partition rearrangement for forward iterators

that calls exchange values the same number of times as partition bidirectional

by first computing the potential partition point.

It is possible to accomplish partition with a different rearrangement that

has only a single cycle, resulting in 2v+1 assignments. The idea is to save the

first misplaced element, creating a “hole,” then repeatedly find a misplaced

element on the opposite side of the potential partition point and move it

into the hole, creating a new hole, and finally move the saved element into

the last hole.

Exercise 11.7 Using this technique, implement partition single cycle.

Exercise 11.8 Implement a partition rearrangement for bidirectional itera-

tors that finds appropriate sentinel elements and then uses find if unguarded

and an unguarded version of find backward if not.

Exercise 11.9 Repeat the previous exercise, incorporating the single-cycle

technique.

The idea for a bidirectional partition algorithm, as well as the single-

cycle and sentinel variations, are from C. A. R. Hoare.3

When stability is needed for both sides of the partition and enough

memory is available for a buffer of the same size as the range, the following

algorithm can be used:

3. See Hoare [1962] on the Quicksort algorithm. Because of the requirements of Quicksort,

Hoare’s partition interchanges elements that are greater than or equal to a chosen element

with elements that are less than or equal to the chosen element. A range of equal elements

is divided in the middle. Observe that these two relations, 6 and >, are not complements

of each other.
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template<typename I, typename B, typename P>

requires(Mutable(I) && ForwardIterator(I) &&

Mutable(B) && ForwardIterator(B) &&

ValueType(I) == ValueType(B) &&

UnaryPredicate(P) && ValueType(I) == Domain(P))

I partition_stable_with_buffer(I f, I l, B f_b, P p)

{

// Precondition: mutable bounded range(f, l)

// Precondition: mutable counted range(fb, l− f)

pair<I, B> x = partition_copy(f, l, f, f_b, p);

copy(f_b, x.m1, x.m0);

return x.m0;

}

When there is not enough memory for a full-size buffer, it is possible to

implement stable partition by using a divide-and-conquer algorithm. If the

range is a singleton range, it is already partitioned, and its partition point

can be determined with one predicate application:

template<typename I, typename P>

requires(Mutable(I) && ForwardIterator(I) &&

UnaryPredicate(P) && ValueType(I) == Domain(P))

pair<I, I> partition_stable_singleton(I f, P p)

{

// Precondition: readable bounded range(f, successor(f))

I l = successor(f);

if (!p(source(f))) f = l;

return pair<I, I>(f, l);

}

The returned value is the partition point and the limit of the range: in

other words, the range of values satisfying the predicate.

Two adjacent partitioned ranges can be combined into a single parti-

tioned range by rotating the range bounded by the first and second partition

points around the middle:

template<typename I>

requires(Mutable(I) && ForwardIterator(I))

pair<I, I> combine_ranges(const pair<I, I>& x,
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const pair<I, I>& y)

{

// Precondition: mutable bounded range(x.m0,y.m0)

// Precondition: x.m1 ∈ [x.m0,y.m0]

return pair<I, I>(rotate(x.m0, x.m1, y.m0), y.m1);

}

Lemma 11.10 combine ranges is associative when applied to three nonover-

lapping ranges.

Lemma 11.11 If, for some predicate p,

(∀i ∈ [x.m0, x.m1))p(i)∧

(∀i ∈ [x.m1,y.m0))¬p(i)∧

(∀i ∈ [y.m0,y.m1))p(i)

then after

z← combine ranges(x,y)

the following hold:

(∀i ∈ [x.m0, z.m0))¬p(i)

(∀i ∈ [z.m0, z.m1))p(i)

The inputs are the ranges of values satisfying the predicate and so is the

output; therefore a nonsingleton range is stably partitioned by dividing it

in the middle, partitioning both halves recursively, and then combining the

partitioned parts:

template<typename I, typename P>

requires(Mutable(I) && ForwardIterator(I) &&

UnaryPredicate(P) && ValueType(I) == Domain(P))

pair<I, I> partition_stable_n_nonempty(I f, DistanceType(I) n,

P p)

{

// Precondition: mutable counted range(f,n)∧ n > 0

if (one(n)) return partition_stable_singleton(f, p);

DistanceType(I) h = half_nonnegative(n);

pair<I, I> x = partition_stable_n_nonempty(f, h, p);

pair<I, I> y = partition_stable_n_nonempty(x.m1, n - h, p);

return combine_ranges(x, y);

}
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Since empty ranges never result from subdividing a range of size greater

than 1, we handle that case only at the top level:

template<typename I, typename P>

requires(Mutable(I) && ForwardIterator(I) &&

UnaryPredicate(P) && ValueType(I) == Domain(P))

pair<I, I> partition_stable_n(I f, DistanceType(I) n, P p)

{

// Precondition: mutable counted range(f,n)

if (zero(n)) return pair<I, I>(f, f);

return partition_stable_n_nonempty(f, n, p);

}

Exactly n predicate applications are performed at the bottom level of

recursion. The depth of the recursion for partition stable n nonempty is

dlog2 ne. At every recursive level, we rotate n/2 elements on the average,

requiring between n/2 and 3n/2 assignments, depending on the iterator

category. The total number of assignments is n log2 n/2 for random-access

iterators and 3n log2 n/2 for forward and bidirectional iterators.

Exercise 11.10 Use techniques from the previous chapter to produce a

memory-adaptive version of partition stable n.

11.2 Balanced Reduction

Although the performance of partition stable n depends on subdividing the

range in the middle, its correctness does not. Since combine ranges is a

partially associative operation, the subdivision could be performed at any

point. We can take advantage of this fact to produce an iterative algorithm

with similar performance; such an algorithm is useful, for example, when the

size of the range is not known in advance or to eliminate procedure call over-

head. The basic idea is to use reduction, applying partition stable singleton

to each singleton range and combining the results with combine ranges:

reduce_nonempty(

f, l,

combine_ranges<I>,

partition_trivial<I, P>(p));

where partition trivial is a function object that binds the predicate pa-

rameter to partition stable singleton:
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template<typename I, typename P>

requires(ForwardIterator(I) &&

UnaryPredicate(P) && ValueType(I) == Domain(P))

struct partition_trivial

{

P p;

partition_trivial(const P& p) : p(p) { }

pair<I, I> operator()(I i)

{

return partition_stable_singleton<I, P>(i, p);

}

};

Using reduce nonempty leads to quadratic complexity. We need to take

advantage of partial associativity to create a balanced reduction tree. We

use a binary counter technique to build the reduction tree bottom-up.4 A

hardware binary counter increments an n-bit binary integer by 1. A 1 in

position i has a weight of 2i; a carry from this position has a weight of 2i+1

and propagates to the next-higher position. Our counter uses the “bit” in

position i to represent either empty or the result of reducing 2i elements

from the original range. When the carry propagates to the next higher

position, it is either stored or is combined with another value of the same

weight. The carry from the highest position is returned by the following

procedure, which takes the identity element as an explicit parameter, as

does reduce nonzeroes:

template<typename I, typename Op>

requires(Mutable(I) && ForwardIterator(I) &&

BinaryOperation(Op) && ValueType(I) == Domain(Op))

Domain(Op) add_to_counter(I f, I l, Op op, Domain(Op) x,

const Domain(Op)& z)

{

if (x == z) return z;

while (f != l) {

if (source(f) == z) {

sink(f) = x;

return z;

}

4. The technique is attributed to John McCarthy in Knuth [1998, Section 5.2.4 (Sorting

by Merging), Exercise 17, page 167].
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x = op(source(f), x);

sink(f) = z;

f = successor(f);

}

return x;

}

Storage for the counter is provided by the following type, which handles

overflows from add to counter by extending the counter:

template<typename Op>

requires(BinaryOperation(Op))

struct counter_machine

{

typedef Domain(Op) T;

Op op;

T z;

T f[64];

DistanceType(pointer(T)) n;

counter_machine(Op op, const Domain(Op)& z) :

op(op), z(z), n(0) { }

void operator()(const T& x)

{

// Precondition: must not be called more than 264 − 1 times

T tmp = add_to_counter(f, f + n, op, x, z);

if (tmp != z) {

sink(f + n) = tmp;

n = successor(n);

}

}

};

This uses a built-in C++ array; alternative implementations are possi-

ble.5

After add to counter has been called for every element of a range, the

nonempty positions in the counter are combined with leftmost reduction to

produce the final result:

template<typename I, typename Op, typename F>

5. The choice of 64 elements for the array handles any application on 64-bit architectures.
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requires(Iterator(I) && BinaryOperation(Op) &&

UnaryFunction(F) && I == Domain(F) &&

Codomain(F) == Domain(Op))

Domain(Op) reduce_balanced(I f, I l, Op op, F fun,

const Domain(Op)& z)

{

// Precondition: bounded range(f, l)∧ l− f < 264

// Precondition: partially associative(op)

// Precondition: (∀x ∈ [f, l)) fun(x) is defined

counter_machine<Op> c(op, z);

while (f != l) {

c(fun(f));

f = successor(f);

}

transpose_operation<Op> t_op(op);

return reduce_nonzeroes(c.f, c.f + c.n, t_op, z);

}

The values in higher positions of the counter correspond to earlier ele-

ments of the original range, and the operation is not necessarily commuta-

tive. Therefore we must use a transposed version of the operation, which

we obtain by using the following function object:

template<typename Op>

requires(BinaryOperation(Op))

struct transpose_operation

{

Op op;

transpose_operation(Op op) : op(op) { }

typedef Domain(Op) T;

T operator()(const T& x, const T& y)

{

return op(y, x);

}

};

Now we can implement an iterative version of stable partition with the

following procedure:

template<typename I, typename P>

requires(ForwardIterator(I) && UnaryPredicate(P) &&

ValueType(I) == Domain(P))
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I partition_stable_iterative(I f, I l, P p)

{

// Precondition: bounded range(f, l)∧ l− f < 264

return reduce_balanced(

f, l,

combine_ranges<I>,

partition_trivial<I, P>(p),

pair<I, I>(f, f)

).m0;

}

pairI,I(f, f) is a good way to represent the identity element since it is

never returned by partition trivial or the combining operation.

The iterative algorithm constructs a different reduction tree than the

recursive algorithm. When the size of the problem is equal to 2k, the recur-

sive and iterative versions perform the same sequence of combining opera-

tions; otherwise the iterative version may do up to a linear amount of extra

work. For example, in some algorithms the complexity goes from n log2 n

to n log2 n+ n
2 .

Exercise 11.11 Implement an iterative version of sort linked nonempty n

from Chapter 8, using reduce balanced.

Exercise 11.12 Implement an iterative version of reverse n adaptive from

Chapter 10, using reduce balanced.

Exercise 11.13 Use reduce balanced to implement an iterative and memory-

adaptive version of partition stable n.

11.3 Merging

In Chapter 9 we presented copying merge algorithms that combine two

increasing ranges into a third increasing range. For sorting, it is useful

to have a rearrangement that merges two adjacent increasing ranges into a

single increasing range. With a buffer of size equal to that of the first range,

we can use the following procedure:6

template<typename I, typename B, typename R>

requires(Mutable(I) && ForwardIterator(I) &&

Mutable(B) && ForwardIterator(B) &&

6. Solving Exercise 9.5 explains the need for extracting the member m2.
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ValueType(I) == ValueType(B) &&

Relation(R) && ValueType(I) == Domain(R))

I merge_n_with_buffer(I f0, DistanceType(I) n0,

I f1, DistanceType(I) n1, B f_b, R r)

{

// Precondition: mergeable(f0,n0, f1,n1, r)

// Precondition: mutable counted range(fb,n0)

copy_n(f0, n0, f_b);

return merge_copy_n(f_b, n0, f1, n1, f0, r).m2;

}

where mergeable is defined as follows:

property(I : ForwardIterator ,N : Integer ,R : Relation)

requires(Mutable(I)∧ ValueType(I) = Domain(R))

mergeable : I×N× I×N× R
(f0,n0, f1,n1, r) 7→ f0 + n0 = f1 ∧

mutable counted range(f0,n0 + n1)∧

weak ordering(r)∧

increasing counted range(f0,n0, r)∧

increasing counted range(f1,n1, r)

Lemma 11.12 The postcondition for merge n with buffer is

increasing counted range(f0,n0 + n1, r)

A merge is stable if the output range preserves the relative order of

equivalent elements both within each input range and between the first and

second input range.

Lemma 11.13 merge n with buffer is stable.

Note that merge linked nonempty, merge copy, and merge copy backward

are also stable.

We can sort a range with a buffer of half of its size:7

template<typename I, typename B, typename R>

requires(Mutable(I) && ForwardIterator(I) &&

Mutable(B) && ForwardIterator(B) &&

ValueType(I) == ValueType(B) &&

Relation(R) && ValueType(I) == Domain(R))

7. A similar algorithm was first described in John W. Mauchly’s lecture “Sorting and

collating” [Mauchly 1946].



11.3 Merging 201

I sort_n_with_buffer(I f, DistanceType(I) n, B f_b, R r)

{

// Precondition: mutable counted range(f,n)∧ weak ordering(r)

// Precondition: mutable counted range(fb, dn/2e)
DistanceType(I) h = half_nonnegative(n);

if (zero(h)) return f + n;

I m = sort_n_with_buffer(f, h, f_b, r);

sort_n_with_buffer(m, n - h, f_b, r);

return merge_n_with_buffer(f, h, m, n - h, f_b, r);

}

Lemma 11.14 The postcondition for sort n with buffer is

increasing counted range(f,n, r)

A sorting algorithm is stable if it preserves the relative order of elements

with equivalent values.

Lemma 11.15 sort n with buffer is stable.

The algorithm has dlog2 ne recursive levels. Each level performs at most

3n/2 assignments, for a total bounded by 3
2ndlog2 ne. At the ith level from

the bottom, the worst-case number of comparisons is n − n
2i

, giving us the

following bound on the number of comparisons:

ndlog2 ne−
dlog2ne∑
i=1

n

2i
≈ ndlog2 ne− n

When a buffer of sufficient size is available, sort n with buffer is an effi-

cient algorithm. When less memory is available, a memory-adaptive merge

algorithm can be used. Subdividing the first subrange in the middle and us-

ing the middle element to subdivide the second subrange at its lower bound

point results in four subranges r0, r1, r2, and r3 such that the values in r2

are strictly less than the values in r1. Rotating the ranges r1 and r2 leads

to two new merge subproblems (r0 with r2 and r1 with r3):

template<typename I, typename R>

requires(Mutable(I) && ForwardIterator(I) &&

Relation(R) && ValueType(I) == Domain(R))

void merge_n_step_0(I f0, DistanceType(I) n0,

I f1, DistanceType(I) n1, R r,

I& f0_0, DistanceType(I)& n0_0,
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I& f0_1, DistanceType(I)& n0_1,

I& f1_0, DistanceType(I)& n1_0,

I& f1_1, DistanceType(I)& n1_1)

{

// Precondition: mergeable(f0,n0, f1,n1, r)

f0_0 = f0;

n0_0 = half_nonnegative(n0);

f0_1 = f0_0 + n0_0;

f1_1 = lower_bound_n(f1, n1, source(f0_1), r);

f1_0 = rotate(f0_1, f1, f1_1);

n0_1 = f1_0 - f0_1;

f1_0 = successor(f1_0);

n1_0 = predecessor(n0 - n0_0);

n1_1 = n1 - n0_1;

}

Lemma 11.16 The rotate does not change the relative positions of elements

with equivalent values.

An iterator i in a range is a pivot if its value is not smaller than any

value preceding it and not larger than any value following it.

Lemma 11.17 After merge n step 0, f1 0 is a pivot.

We can perform an analogous subdivision from the right by using upper bound:

template<typename I, typename R>

requires(Mutable(I) && ForwardIterator(I) &&

Relation(R) && ValueType(I) == Domain(R))

void merge_n_step_1(I f0, DistanceType(I) n0,

I f1, DistanceType(I) n1, R r,

I& f0_0, DistanceType(I)& n0_0,

I& f0_1, DistanceType(I)& n0_1,

I& f1_0, DistanceType(I)& n1_0,

I& f1_1, DistanceType(I)& n1_1)

{

// Precondition: mergeable(f0,n0, f1,n1, r)

f0_0 = f0;

n0_1 = half_nonnegative(n1);

f1_1 = f1 + n0_1;

f0_1 = upper_bound_n(f0, n0, source(f1_1), r);

f1_1 = successor(f1_1);
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f1_0 = rotate(f0_1, f1, f1_1);

n0_0 = f0_1 - f0_0;

n1_0 = n0 - n0_0;

n1_1 = predecessor(n1 - n0_1);

}

This leads to the following algorithm from Dudziński and Dydek [1981]:

template<typename I, typename B, typename R>

requires(Mutable(I) && ForwardIterator(I) &&

Mutable(B) && ForwardIterator(B) &&

ValueType(I) == ValueType(B) &&

Relation(R) && ValueType(I) == Domain(R))

I merge_n_adaptive(I f0, DistanceType(I) n0,

I f1, DistanceType(I) n1,

B f_b, DistanceType(B) n_b, R r)

{

// Precondition: mergeable(f0,n0, f1,n1, r)

// Precondition: mutable counted range(fb,nb)

typedef DistanceType(I) N;

if (zero(n0) || zero(n1)) return f0 + n0 + n1;

if (n0 <= N(n_b))

return merge_n_with_buffer(f0, n0, f1, n1, f_b, r);

I f0_0; I f0_1; I f1_0; I f1_1;

N n0_0; N n0_1; N n1_0; N n1_1;

if (n0 < n1) merge_n_step_0(

f0, n0, f1, n1, r,

f0_0, n0_0, f0_1, n0_1,

f1_0, n1_0, f1_1, n1_1);

else merge_n_step_1(

f0, n0, f1, n1, r,

f0_0, n0_0, f0_1, n0_1,

f1_0, n1_0, f1_1, n1_1);

merge_n_adaptive(f0_0, n0_0, f0_1, n0_1,

f_b, n_b, r);

return merge_n_adaptive(f1_0, n1_0, f1_1, n1_1,

f_b, n_b, r);

}
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Lemma 11.18 merge n adaptive terminates with an increasing range.

Lemma 11.19 merge n adaptive is stable.

Lemma 11.20 There are at most blog2(min(n0,n1))c+ 1 recursive levels.

Using merge n adaptive, we can implement the following sorting proce-

dure:

template<typename I, typename B, typename R>

requires(Mutable(I) && ForwardIterator(I) &&

Mutable(B) && ForwardIterator(B) &&

ValueType(I) == ValueType(B) &&

Relation(R) && ValueType(I) == Domain(R))

I sort_n_adaptive(I f, DistanceType(I) n,

B f_b, DistanceType(B) n_b, R r)

{

// Precondition: mutable counted range(f,n)∧ weak ordering(r)

// Precondition: mutable counted range(fb,nb)

DistanceType(I) h = half_nonnegative(n);

if (zero(h)) return f + n;

I m = sort_n_adaptive(f, h, f_b, n_b, r);

sort_n_adaptive(m, n - h, f_b, n_b, r);

return merge_n_adaptive(f, h, m, n - h, f_b, n_b, r);

}

Exercise 11.14 Determine formulas for the number of assignments and

the number of comparisons as functions of the size of the input and buffer

ranges. Dudziński and Dydek [1981] contains a careful complexity analysis

of the case in which there is no buffer.

We conclude with the following algorithm:

template<typename I, typename R>

requires(Mutable(I) && ForwardIterator(I) &&

Relation(R) && ValueType(I) == Domain(R))

I sort_n(I f, DistanceType(I) n, R r)

{

// Precondition: mutable counted range(f,n)∧ weak ordering(r)

temporary_buffer<ValueType(I)> b(half_nonnegative(n));

return sort_n_adaptive(f, n, begin(b), size(b), r);

}



11.4 Conclusions 205

It works on ranges with minimal iterator requirements, is stable, and is

efficient even when temporary buffer is only able to allocate a few percent of

the requested memory.

Project 11.1 Develop a library of sorting algorithms constructed from ab-

stract components. Design a benchmark to analyze their performance for

different array sizes, element sizes, and buffer sizes. Document the library

with recommendations for the circumstances in which each algorithm is ap-

propriate.

11.4 Conclusions

Complex algorithms are decomposable into simpler abstract components

with carefully defined interfaces. The components so discovered are then

used to implement other algorithms. The iterative process going from com-

plex to simple and back is central to the discovery of a systematic catalog

of efficient components.





Chapter 12

Composite Objects

Chapters 6 through 11 presented algorithms working on collections of ob-

jects (data structures) through iterators or coordinate structures in isolation

from construction, destruction, and structural mutation of these collections:

Collections themselves were not viewed as objects. This chapter provides

examples of composite objects, starting with pairs and constant-size arrays

and ending with a taxonomy of implementations of dynamic sequences. We

describe a general schema of a composite object containing other objects as

its parts. We conclude by demonstrating the mechanism enabling efficient

behavior of rearrangement algorithms on nested composite objects.

12.1 Simple Composite Objects

To understand how to extend regularity to composite objects, let us start

with some simple cases. In Chapter 1 we introduced the type constructor

pair, which, given two types T0 and T1, returns the structure type pairT0,T1 .

We implement pair with a structure template together with some global

procedures:

template<typename T0, typename T1>

requires(Regular(T0) && Regular(T1))

struct pair

{

T0 m0;

T1 m1;

pair() { } // default constructor

207
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pair(const T0& m0, const T1& m1) : m0(m0), m1(m1) { }

};

C++ ensures that the default constructor performs a default construc-

tion of both members, guaranteeing that they are in partially formed states

and can thus be assigned to or destroyed. C++ automatically generates a

copy constructor and assignment that, respectively, copies or assigns each

member and automatically generates a destructor that invokes the destruc-

tor for each member. We need to provide equality and ordering manually:

template<typename T0, typename T1>

requires(Regular(T0) && Regular(T1))

bool operator==(const pair<T0, T1>& x, const pair<T0, T1>& y)

{

return x.m0 == y.m0 && x.m1 == y.m1;

}

template<typename T0, typename T1>

requires(TotallyOrdered(T0) && TotallyOrdered(T1))

bool operator<(const pair<T0, T1>& x, const pair<T0, T1>& y)

{

return x.m0 < y.m0 || (!(y.m0 < x.m0) && x.m1 < y.m1);

}

Exercise 12.1 Implement the default ordering, less, for pairT0,T1, using the

default orderings for T0 and T1, for situations in which both member types

are not totally ordered.

Exercise 12.2 Implement tripleT0,T1,T2
.

While pair is a heterogeneous type constructor, array k is a homoge-

neous type constructor, which, given an integer k and a type T , returns the

constant-size sequence type array kk,T :

template<int k, typename T>

requires(0 < k && k <= MaximumValue(int) / sizeof(T) &&

Regular(T))

struct array_k

{

T a[k];
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T& operator[](int i)

{

// Precondition: 0 6 i < k

return a[i];

}

};

The requirement on k is defined in terms of type attributes. Maximum-

Value(N) returns the maximum value representable by the integer type N,

and sizeof is the built-in type attribute that returns the size of a type.

C++ generates the default constructor, copy constructor, assignment, and

destructor for array k with correct semantics. We implement the member

function that allows reading or writing x[i].1

IteratorType(array kk,T ) is defined to be pointer to T . We provide proce-

dures to return the first and the limit of the array elements:2

template<int k, typename T>

requires(Regular(T))

pointer(T) begin(array_k<k, T>& x)

{

return addressof(x.a[0]);

}

template<int k, typename T>

requires(Regular(T))

pointer(T) end(array_k<k, T>& x)

{

return begin(x) + k;

}

An object x of array kk,T type can be initialized to a copy of the counted

range Jf,kM with code like

copy_n(f, k, begin(x));

We do not know how to implement a proper initializing constructor that

avoids the automatically generated default construction of every element

1. As with begin and end, overloading on constant is needed for a complete implementa-

tion.
2. A complete implementation will also provide a constant iterator type, as a constant

pointer to T , together with versions of begin and end overloaded on constant array k that

return the constant iterator type.
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of the array. In addition, while copy n takes any category of iterator and

returns the limit iterator, there would be no way to return the limit iterator

from a copy constructor.

Equality and ordering for arrays use the lexicographical extensions in-

troduced in Chapter 7:

template<int k, typename T>

requires(Regular(T))

bool operator==(const array_k<k, T>& x, const array_k<k, T>& y)

{

return lexicographical_equal(begin(x), end(x),

begin(y), end(y));

}

template<int k, typename T>

requires(Regular(T))

bool operator<(const array_k<k, T>& x, const array_k<k, T>& y)

{

return lexicographical_less(begin(x), end(x),

begin(y), end(y));

}

Exercise 12.3 Implement versions of = and < for array kk,T that generate

inline unrolled code for small k.

Exercise 12.4 Implement the default ordering, less, for array kk,T .

We provide a procedure to return the number of elements in the array:

template<int k, typename T>

requires(Regular(T))

int size(const array_k<k, T>& x)

{

return k;

}

and one to determine whether the size is 0:

template<int k, typename T>

requires(Regular(T))

bool empty(const array_k<k, T>& x)

{
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return false;

}

We took the trouble to define size and empty so that array k would model

Sequence, which we define later.

Exercise 12.5 Extend array k to accept k = 0.

array k models the concept Linearizable:

Linearizable(W) ,

Regular(W)

∧ IteratorType : Linearizable → Iterator

∧ ValueType : Linearizable → Regular

W 7→ ValueType(IteratorType(W))

∧ SizeType : Linearizable → Integer

W 7→ DistanceType(IteratorType(W))

∧ begin :W → IteratorType(W)

∧ end :W → IteratorType(W)

∧ size :W → SizeType(W)

x 7→ end(x) − begin(x)

∧ empty :W → bool

x 7→ begin(x) = end(x)

∧ [ ] :W × SizeType(W)→ ValueType(W)&

(w, i) 7→ deref(begin(w) + i)

empty always takes constant time, even when size takes linear time. The

precondition for w[i] is 0 6 i < size(w); its complexity is determined by

the iterator type specification of concepts refining Linearizable: linear for

forward and bidirectional iterators and constant for indexed and random-

access iterators.

A linearizable type describes a range of iterators via the standard func-

tions begin and end, but unlike array k, copying a linearizable does not need

to copy the underlying objects; as we shall see later, it is not a container:

a sequence that owns its elements. The following type, for example, mod-

els Linearizable and is not a container; it designates a bounded range of

iterators residing in some data structure:

template<typename I>

requires(Readable(I) && Iterator(I))

struct bounded_range {

I f;
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I l;

bounded_range() { }

bounded_range(const I& f, const I& l) : f(f), l(l) { }

const ValueType(I)& operator[](DistanceType(I) i)

{

// Precondition: 0 6 i < l− f

return source(f + i);

}

};

C++ automatically generates the copy constructor, assignment, and de-

structor, with the same semantics as pairI,I. If T is bounded rangeI, Iterator–

Type(T) is defined to be I, and SizeType(T) is defined to be DistanceType(I).

It is straightforward to define the iterator-related procedures:

template<typename I>

requires(Readable(I) && Iterator(I))

I begin(const bounded_range<I>& x) { return x.f; }

template<typename I>

requires(Readable(I) && Iterator(I))

I end(const bounded_range<I>& x) { return x.l; }

template<typename I>

requires(Readable(I) && Iterator(I))

DistanceType(I) size(const bounded_range<I>& x)

{

return end(x) - begin(x);

}

template<typename I>

requires(Readable(I) && Iterator(I))

bool empty(const bounded_range<I>& x)

{

return begin(x) == end(x);

}

Unlike array k, equality for bounded range does not use lexicographic

equality but instead effectively treats the object as a pair of iterators and

compares the corresponding values:
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template<typename I>

requires(Readable(I) && Iterator(I))

bool operator==(const bounded_range<I>& x,

const bounded_range<I>& y)

{

return begin(x) == begin(y) && end(x) == end(y);

}

The equality so defined is consistent with the copy constructor generated

by C++, which treats it just as a pair of iterators. Consider a type W that

models Linearizable. If W is a container with linear coordinate structure,

lexicographical equal is its correct equality, as we defined for array k. IfW is a

homogeneous container whose coordinate structure is not linear (e.g., a tree

or a matrix), neither lexicographical equal nor range equality (as we defined

for bounded range) is the correct equality, although lexicographical equal may

still be a useful algorithm. If W is not a container but just a description

of a range owned by another data structure, range equality is its correct

equality.

The default total ordering for bounded rangeI is defined lexicographically

on the pair of iterators, using the default total ordering for I:

template<typename I>

requires(Readable(I) && Iterator(I))

struct less< bounded_range<I> >

{

bool operator()(const bounded_range<I>& x,

const bounded_range<I>& y)

{

less<I> less_I;

return less_I(begin(x), begin(y)) ||

(!less_I(begin(y), begin(x)) &&

less_I(end(x), end(y)));

}

};

Even when an iterator type has no natural total ordering, it should

provide a default total ordering: for example, by treating the bit pattern as

an unsigned integer.

pair and array k are examples of a very broad class of composite objects.
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An object is a composite object if it is made up of other objects, called its

parts. The whole–part relationship satisfies the four properties of connect-

edness, noncircularity, disjointness, and ownership. Connectedness means

that an object has an affiliated coordinate structure that allows every part

of the object to be reached from the object’s starting address. Noncircu-

larity means that an object is not a subpart of itself, where subparts of an

object are its parts and subparts of its parts. (Noncircularity implies that

no object is a part of itself.) Disjointness means that if two objects have

a subpart in common, one of the two is a subpart of the other. Ownership

means that copying an object copies its parts, and destroying the object

destroys its parts. A composite object is dynamic if the set of its parts

could change over its lifetime.

We refer to the type of a composite object as a composite object type

and to a concept modeled by a composite object type as a composite object

concept. No algorithms can be defined on composite objects as such, since

composite object is a concept schema rather than a concept.

array k is a model of the concept Sequence: a composite object concept

that refines Linearizable and whose range of elements are its parts:

Sequence(S) ,

Linearizable(S)

∧ (∀s ∈ S) (∀i ∈ [begin(s), end(s))) deref(i) is a part of s

∧ = : S× S→ bool

(s, s ′) 7→ lexicographical equal(

begin(s), end(s), begin(s ′), end(s ′))

∧ < : S× S→ bool

(s, s ′) 7→ lexicographical less(

begin(s), end(s), begin(s ′), end(s ′))

If s and s ′ are equal but not identical sequences, begin(s) 6= begin(s ′),

but source(begin(s)) = source(begin(s ′)). This is an example of projection

regularity . Note that begin and end can be regular for a Linearizable that

is not a Sequence; for example, they are regular for bounded range.

Exercise 12.6 Define a property projection regular function.

12.2 Dynamic Sequences

array kk,T is a constant-size sequence: The parameter k is determined at

compile time and applies to all objects of the type. We do not define a
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corresponding concept for constant-size sequences, since we are not aware

of other useful models. Similarly, we do not define a concept for a fixed-size

sequence, whose size is determined at construction time. All the data struc-

tures we know that model a fixed-size sequence also model a dynamic-size

sequence, whose size varies as elements are inserted or erased. (There are,

however, fixed-size composite objects; for example, n× n square matrices.)

Regardless of the specific data structure, the requirements of regular

types dictate standard behavior for a dynamic sequence. When it is de-

stroyed, all its elements are destroyed, and their resources are freed. Equal-

ity and total ordering on dynamic sequences are defined lexicographically,

just as for array k. When a dynamic sequence is assigned to, it becomes

equal to but disjoint from the right-hand side; similarly, a copy constructor

creates an equal but disjoint sequence.

If s is a dynamic-size, or simply dynamic, sequence of size n > 0, insert-

ing a range r of size k at insertion index i increases the size to n+ k. The

insertion index i may be any of the n+ 1 values in the closed interval [0,n].

If s ′ is the value of the sequence after the insertion, then

s ′[j] =


s[j] if 0 6 j < i

r[j− i] if i 6 j < i+ k

s[j− k] if i+ k 6 j < n+ k

Similarly, if s is a sequence of size n > k, erasing k elements at erasure

index i decreases the size to n − k. The erasure index i may be any of the

n − k + 1 values in the closed interval [0,n − k]. If s ′ is the value of the

sequence after the erasure, then

s ′[j] =

s[j] if 0 6 j < i

s[j+ k] if i 6 j < n− k

The need to insert and erase elements introduces many varieties of se-

quential data structures with different complexity tradeoffs for insert and

erase. All these categories depend on the presence of remote parts. A part

is remote if it does not reside at a constant offset from the address of an ob-

ject but must be reached via a traversal of the object’s coordinate structure

starting at its header. The header of a composite object is the collection of

its local parts, that is, the parts residing at constant offsets from the starting

address of the object. The number of local parts in an object is a constant

determined by its type.

In this section we summarize the properties of sequential data structures

falling into the fundamental categories: linked and extent-based.
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Linked data structures connect data parts with pointers serving as links.

Each element resides in a distinct permanently placed part: During the

lifetime of an element, its address never changes. Along with the element,

the part contains connectors to adjacent parts. The iterators are linked

iterators; indexed iterators are not supported. Insert and erase operations

taking constant time are possible, since they are implemented by relinking

operations and, therefore, do not invalidate iterators. There are two main

varieties of linked list: singly linked and doubly linked.

A singly linked list has a linked ForwardIterator . The cost of insert and

erase after a specified iterator is constant, whereas the cost of insert before

and erase at an arbitrary iterator is linear in the distance from the front of

the list. Thus the cost of insert and erase at the front of the list is constant.

There are several varieties of singly linked lists, differing in the structure

of the header and the link of the last element. The header of a basic list

consists of a link to the first element, or a special null value to indicate an

empty list; the link of the last element is null. The header of a circular list

consists of the link to the last element or null to indicate an empty list; the

link of the last element points to the first element. The header of a first-last

list consists of two parts: the header of a null-terminated basic list and a

link to the last element of the list or null if the list is empty.

Several factors affect the choice of a singly linked list implementation.

A smaller header is valuable in an application with a large number of lists,

many of which are empty. The iterator for a circular list is larger, and its

successor operation is slower because it is necessary to distinguish between

the pointer to the first and the pointer to the limit. A data structure sup-

porting constant-time insert at the back can be used as a queue or output-

restricted deque. These implementation tradeoffs are summarized in the

following table:

Variety One-word header Simple iterator Back insert

basic yes yes no

circular yes no yes

first-last no yes yes

A doubly linked list has a linked BidirectionalIterator . The cost of insert

(both before or after an iterator) or erase is always constant. As with singly

linked lists, there are several varieties of doubly linked lists. The header of

a circular list consists of a pointer to the first element or null to indicate an

empty list; the backward link of the first element points to the last element,

and the forward link of the last element points to the first element. A

dummy node list is similar to a circular list but has an additional dummy
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node between the last and first elements; the header consists of a link to

the dummy node, which might omit the actual data object. A two-pointer

header is similar to a dummy node list, but the header consists of two

pointers corresponding to the links of the dummy node.

Two factors affecting the choice of a singly linked list implementation

are relevant for doubly linked list implementations, namely, header size and

iterator complexity. There are additional issues specific to doubly linked

lists. Some algorithms may be simplified if a list has a permanent limit

iterator, since the limit can then be used as a value distinguishable from

any valid iterator over the entire lifetime of the list. As we will see later in

this chapter, the presence of links from remote parts to local parts makes it

more costly to perform a rearrangement on elements that are of the list type.

These implementation tradeoffs are summarized in the following table:

One-word Simple No remote to Permanent

Variety header iterator local links limit

circular yes no yes no

dummy node yes yes yes no3

two-pointer header no yes no yes

In Chapter 8 we introduced link rearrangements, which rearrange the

connectivity of linked iterators in one or more linked ranges without creating

or destroying iterators or changing the relationships between the iterators

and the objects they designate. Link rearrangements can be restricted to

one list, or they can involve multiple lists, in which case ownership of the

elements changes. For example, split linked can be used to move elements

satisfying a predicate from one list to another, and combine linked nonempty

can be used to move elements in one list to merged positions in another

list. Splicing is a link rearrangement that erases a range from one list and

reinserts it in another list.

Backward links in a linked structure are not used in algorithms like

sorting. They do, however, allow constant-time erasure and insertion of

elements at an arbitrary location, which are more expensive in a singly

linked structure. Since the efficiency of insertion and deletion is often the

reason for choosing linked structures in the first place, bidirectional linkage

should be seriously considered.

3. If the dummy node is allocated even when the list is empty, there is a permanent limit;

unfortunately, this violates the desirable property of empty data structures having no

remote parts and thus being constructable without any additional resources.
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Extent-based data structures group elements in one or more extents, or

remote blocks of data parts, and provide random access to them. Insert

and erase at an arbitrary position take time proportionate to the size of the

sequence, whereas insert and erase at the back and possibly the front take

amortized constant time.4 Insert and erase invalidate certain iterators fol-

lowing specific rules for each implementation; in other words, no element is

permanently placed. Some extent-based data structures use a single extent,

whereas others are segmented, using multiple extents as well as additional

index structures.

In a single-extent array the extent need only be present when the size is

nonzero. To avoid reallocation at every insert, the extent contains a reserve

area; when the reserve area is exhausted, the extent is reallocated. The

header contains a pointer to the extent; additional pointers keeping track of

the data and reserve areas normally reside in a prefix of the extent. Placing

the additional pointers in the prefix and not in the header improves both

space and time complexity when arrays are nested.

There are several varieties of single-extent arrays. In a single-ended

array, the data starts at a fixed offset in the extent and is followed by the

reserve area.5 In a double-ended array, the data is in the middle of the

extent, with reserve areas surrounding it at both ends; if growth at either

end exhausts the corresponding reserve area, the extent is reallocated. In a

circular array, the extent is treated as if the successor to its highest address

is its lowest address; thus the single reserve area always logically precedes

and follows the data, which can grow in both directions.

Several factors affect the choice of a single-extent array implementa-

tion. For single-ended and double-ended arrays, machine addresses are the

most efficient implementation of iterators; the iterator for a circular array

is larger, and its traversal functions are slower because of the need to keep

track of whether the in-use area has wrapped around to the start of the

extent. A data structure supporting constant-time insert/erase at the front

allows a data structure to be used as a queue or an output-restricted deque.

A double-ended array could require reallocation even when one of its two re-

serve areas has available space; a single-ended or circular array only requires

reallocation when no reserve remains.

4. The amortized complexity of an operation is the complexity averaged over a worst-case

sequence of operations. The notion of amortized complexity was introduced in Tarjan

[1985].
5. Of course, it is possible to grow data from the back downward, but this does not appear

to be practically useful.
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Simple Front Reallocation

Variety iterator insert/erase efficient

single-ended yes no yes

double-ended yes yes no

circular no yes yes

When an insert occurs and the extent of a single-ended or circular array

is full, reallocation occurs: A larger extent is allocated, and the existing

elements are moved to the new extent. In the case of a double-ended array,

an insertion exhausting the reserve at one end of the array requires either

reallocation or moving the elements toward the other end to redistribute

the remaining reserve. Reallocation—and moving elements within a double-

ended array—invalidates all the iterators pointing into the array.

When reallocation occurs, increasing the size of the extent by a mul-

tiplicative factor leads to an amortized constant number of constructions

per element. Our experiments suggest a factor of 2 as a good tradeoff be-

tween minimizing the amortized number of constructions per element and

the storage utilization.

Exercise 12.7 Derive expressions for the storage utilization and number of

constructions per element for various multiplicative factors.

Project 12.1 Combine theoretical analysis with experimentation to deter-

mine optimal reallocation strategies for single-extent arrays under various

realistic workloads.

For a single-ended or circular single-extent array a, there is a function

capacity such that size(a) 6 capacity(a), and insertion in a performs real-

location only when the size after the insertion is greater than the capacity

before the insertion. There is also a procedure reserve that allows the ca-

pacity of an array to be increased to a specified amount.

Exercise 12.8 Design an interface for capacity and reserve for double-ended

arrays.

A segmented array has one or more extents holding the elements and an

index data structure managing pointers to the extents. Checking for the end

of the extent makes the iterator traversal functions slower than for a single-

extent array. The index must support the same behavior as the segmented

array: It must support random access and insertion and erasure at the

back and, if desired, at the front. Full reallocation is never needed, because

another extent is added when an existing extent becomes full. Reserve space

is only needed in the extents at one or both ends.
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The main source of variety of segmented arrays is the structure of the

index. A single-extent index is a single-extent array of pointers to data

extents; such an index supports growth at the back, whereas a double-ended

or circular index supports growth at either end. A segmented index is itself

a segmented array, typically with a single-extent index, but potentially also

with a segmented index. A slanted index has multiple levels. Its root is a

single fixed-size extent; the first few elements are pointers to data extents;

the next element points to an indirect index extent containing pointers to

data extents; the next points to a doubly indirect extent containing pointers

to indirect index extents; and so on.6

Project 12.2 Design a complete family of interfaces for dynamic sequences.

It should include construction, insertion, erasure, and splicing. Ensure that

there are variations to handle the special cases for different implementations.

For example, it should be possible to insert after as well as before a specified

iterator to handle singly linked lists.

Project 12.3 Implement a comprehensive library of dynamic sequences,

providing various singly linked, doubly linked, single-extent, and segmented

data structures.

Project 12.4 Design a benchmark for dynamic sequences based on realistic

application workloads, measure the performance of various data structures,

and provide a selection guide for the user, based on the results.

12.3 Underlying Type

In Chapters 2 through 5 we studied algorithms on mathematical values and

saw how equational reasoning as enabled by regular types applies to algo-

rithms as well as to proofs. In Chapters 6 through 11 we studied algorithms

on memory and saw how equational reasoning remains useful in a world with

changing state. We dealt with small objects, such as integers and pointers,

which are cheaply assigned and copied. In this chapter we introduced com-

posite objects that satisfy the requirements of regular types and can thus be

used as elements of other composite objects. Dynamic sequences and other

composite objects that separate the header from the remote parts allow

for an efficient way to implement rearrangements: moving headers without

moving the remote parts.

To understand the problem of an inefficient rearrangement involving

composite objects, consider the swap basic procedure defined as follows:

6. This is based on the original UNIX file system [see Thompson and Ritchie 1974].
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template<typename T>

requires(Regular(T))

void swap_basic(T& x, T& y)

{

T tmp = x;

x = y;

y = tmp;

}

Suppose that we call swap basic(a,b) to interchange two dynamic se-

quences. The copy construction and the two assignments it performs take

linear time. Furthermore, an out-of-memory exception could occur even

though no net increase of memory is needed.

We could avoid this expensive copying by specializing swap basic to swap

the headers of the specific dynamic sequence type and, if necessary, update

links from the remote parts to the header. There are, however, problems

with specializing swap basic. First, it needs to be repeated for each data

structure. More important, many rearrangement algorithms are not based

on swap basic, including in-place permutations, such as cycle from, and al-

gorithms that use a buffer, such as merge n with buffer. Finally, there are

situations, such as reallocating a single-extent array, in which objects are

moved from an old extent to a new one.

We want to generalize the idea of swapping headers to arbitrary rear-

rangements, to allow the use of buffer memory and reallocation, and to

continue to write abstract algorithms that do not depend on the implemen-

tation of the objects they manipulate. To accomplish this, we associate

every regular type T with its underlying type, U = UnderlyingType(T). The

type U is identical to the type T when T has no remote parts or has remote

parts with links back to the header.7 Otherwise U is identical to type T in

every respect except that it does not maintain ownership: Destruction does

not affect the remote parts, and copy construction and assignment simply

copy the header without copying the remote parts. When the underlying

type is different from the original type, it has the same layout (bit pattern)

as the header of the original type.

The fact that the same bit pattern could be interpreted as an object

of a type and of its underlying type allows us to view the memory as one

or the other, using the built-in reinterpret cast function template. Objects

of UnderlyingType(T) may only be used to hold temporary values while im-

7. This explains the warning against links from remote parts to the header in our discus-

sion of doubly linked lists.
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plementing a rearrangement of objects of type T . The complexity of copy

construction and assignment for a proper underlying type—one that is not

identical to the original type—are proportional to the size of the header of

type T . An additional benefit in this case is that copy construction and

assignment for UnderlyingType(T) never throw an exception.

The implementation of the underlying type for an original type T is

straightforward and could be automated. U = UnderlyingType(T) always

has the same layout as the header of T . The copy constructor and assign-

ment for U just copy the bits; they do not construct a copy of the remote

parts of T . For example, the underlying type of pairT0,T1 is a pair whose

members are the underlying types of T0 and T1; similarly for other tuple

types. The underlying type of array kk,T is an array kk whose elements are

the underlying type of T .

Once UnderlyingType(T) has been defined, we can cast a reference to T

into a reference to UnderlyingType(T), without performing any computation,

with this procedure:

template<typename T>

requires(Regular(T))

UnderlyingType(T)& underlying_ref(T& x)

{

return reinterpret_cast<UnderlyingType(T)&>(x);

}

Now we can efficiently swap composite objects by rewriting swap basic

as follows:

template<typename T>

requires(Regular(T))

void swap(T& x, T& y)

{

UnderlyingType(T) tmp = underlying_ref(x);

underlying_ref(x) = underlying_ref(y);

underlying_ref(y) = tmp;

}

which could also be accomplished with:

swap_basic(underlying_ref(x), underlying_ref(y));

Many rearrangement algorithms can be modified for use with underlying

type simply by reimplementing exchange values and cycle from the same way

we reimplemented swap.
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To handle other rearrangement algorithms, we use an iterator adapter.

Such an adapter has the same traversal operations as the original itera-

tor, but the value type is replaced by the underlying type of the original

value type; source returns underlying ref(source(x.i)), and sink returns

underlying ref(sink(x.i)), where x is the adapter object, and i is the

original iterator object inside x.

Exercise 12.9 Implement such an adapter that works for all iterator con-

cepts.

Now we can reimplement reverse n with temporary buffer as follows:

template<typename I>

requires(Mutable(I) && ForwardIterator(I))

void reverse_n_with_temporary_buffer(I f, DistanceType(I) n)

{

// Precondition: mutable counted range(f,n)

temporary_buffer<UnderlyingType(ValueType(I))> b(n);

reverse_n_adaptive(underlying_iterator<I>(f), n,

begin(b), size(b));

}

where underlying iterator is the adapter from Exercise 12.9.

Project 12.5 Use underlying type systematically throughout a major C++

library, such as STL, or design a new library based on the ideas in this book.

12.4 Conclusions

We extended the structure types and constant-size array types of C++ to

dynamic data structures with remote parts. The concepts of ownership and

regularity determine treatment of parts by copy construction, assignment,

equality, and total ordering. As we showed for the case of dynamic se-

quences, useful varieties of data structures should be carefully implemented,

classified, and documented so that programmers can select the best one for

each application. Rearrangements on nested data structures are efficiently

implemented by temporarily relaxing the ownership invariant.





Afterword

We recap the main themes of the book: regularity, concepts, algorithms

and their interfaces, programming techniques, and meanings of pointers. For

each theme, we also discuss its particular limitations.

Regularity

Regular types define copy construction and assignment in terms of equality.

Regular functions return equal results when applied to equal arguments. For

example, regularity of transformations allowed us to define and reason about

algorithms for analyzing orbits. Regularity was in fact relied on throughout

the book by ordering relations, the successor function for forward iterators,

and many others.

When we work with built-in types, we usually treat the complexity of

equality, copying, and assignment as constant. When we deal with compos-

ite objects, the complexity of these operations is expected to be linear in

the area of objects: the total amount of memory, including remote as well

as local parts. Our expectation, however, that equality is at worst linear in

the area of its arguments cannot always be met in practice.

For example, consider representing a multiset , or unordered collection

of potentially repeated elements, as an unsorted dynamic sequence. Al-

though inserting a new element takes constant time, testing two multisets

for equality takes O(n logn) time to sort them and then compare them

lexicographically. If equality testing is infrequent, this is a good tradeoff;

however, putting such multisets into a sequence to be searched with find

could lead to unacceptable performance. For an extreme example, consider

a situation in which the equality for a type must be implemented with graph

isomorphism, a problem for which no polynomial-time algorithm is known.

We noted in Section 1.2 that when implementing behavioral equality

on values is not feasible, we can often implement representational equal-

225



226 AFTERWORD

ity. For composite objects, we often implement representational equality

with the techniques of Section 7.4. Such structural equality is often use-

ful in giving the semantics of copy construction and assignment and may

be useful for other purposes. Recall that representational equality implies

behavioral equality. Similarly, while a natural total ordering is not always

realizable, a default total ordering based on structure (e.g., lexicographical

ordering for sequences) allows us to efficiently sort and search. There are,

of course, objects for which neither copy construction nor assignment—nor

even equality—makes sense, because they own a unique resource.

Concepts

We use concepts from abstract algebra—semigroups, monoids, and modules—

to describe such algorithms as power, remainder, and gcd. In many cases we

need to adapt standard mathematical concepts to fit algorithms. Sometimes,

we introduce new concepts, such as HalvableMonoid , to strengthen require-

ments. Sometimes, we relax requirements, as with the partially associative

property. Often we deal with partial domains, as with the definition-space

predicate passed to collision point. Mathematical concepts are tools to be

used and freely modified. It is the same with concepts originating in com-

puter science. The iterator concepts describe fundamental properties of

certain algorithms and data structures; however, there are other coordinate

structures described by concepts yet to be discovered. It is a task of the

programmer to determine whether a given concept is useful.

Algorithms and Their Interfaces

Bounded half-open ranges correspond naturally to the implementation of

many data structures and provide a convenient way to represent inputs and

outputs for such algorithms as find, rotate, partition, merge, and so on.

However, with some algorithms, such as partition point n, a counted range

is the natural interface. Even for algorithms for which bounded ranges

are natural, there usually exist natural variations taking counted ranges.

Limiting ourselves to a single variety of interface would be a false economy.

Three rotation algorithms, described in Chapter 10, correspond to three

iterator concepts. For every algorithm, we need to discover its conceptual

requirements, the preconditions on its input, and any other characteristics

that make its use appropriate. It is rarely the case that a single algorithm

is appropriate in all circumstances.
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Programming Techniques

Using successor, a transformation that is strictly functional, allowed us to

write a variety of clear and efficient programs. In Chapter 9, however, we

chose to encapsulate calls of successor and predecessor into small mutative

machines, such as copy step, since it led to clearer code for a family of related

algorithms. Similarly, it is appropriate to use goto in the state machines in

Chapter 8 and to use reinterpret cast for the underlying type mechanism

in Chapter 12. Instead of restricting the expressive power of the underlying

machine and the language, it is necessary to determine the appropriate

use for each available construct. Good software results from the proper

organization of components, not from syntactic or semantic restrictions.

Meanings of Pointers

The book demonstrates two ways of using pointers: (1) as iterators and other

coordinates representing intermediate positions within an algorithm, and (2)

as connectors, representing ownership of the remote parts of a composite

object. For example, in Section 12.2, we discussed the use of pointers to

connect nodes within a list and extents within an array.

These two roles for pointers determine different behavior when an object

is copied, destroyed, or compared for equality. Copying an object follows its

connectors to copy the remote parts, so the new object contains new con-

nectors pointing to the copied parts. On the other hand, copying an object

containing iterators (e.g., a bounded range) simply copies the iterators with-

out following them. Similarly, destroying an object follows its connectors

to destroy the remote parts, while destroying an object containing iterators

has no effect on the object to which the iterators point. Finally, equality

on a container follows connectors to compare corresponding parts, while

equality on a noncontainer (e.g., a bounded range) simply tests for equality

of corresponding iterators.

There is, however, a third way to use pointers, to represent a relation-

ship between entities. A relationship between two or more objects is not

a part owned by these objects; it has an existence of its own while main-

taining mutual dependencies between the objects it relates. In general, a

pointer representing a relationship does not participate in the regular opera-

tions. For example, copying an object does not follow or copy a relationship

pointer, since the relationship exists for the object being copied but not for

its copy. If a one-to-one relationship is represented as a pair of embedded

pointers linking two objects, destroying either of the objects must clear the
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corresponding pointer in the other object.

Designing data structures as composite objects with ownership and re-

mote parts leads to a programming style in which the primary objects—

those that are not subparts of other objects—reside in static variables, with

a lifetime of the entire program execution or, in local variables, with a life-

time of a block. Dynamically allocated memory is used only for remote

parts. This extends the stack-based block structure of Algol 60 to handle

arbitrary data structures. Such structure naturally fits many applications.

However, there are circumstances in which reference counting, garbage col-

lection, or other memory-management techniques are appropriate.

Conclusions

Programming is an iterative process: studying useful problems, finding effi-

cient algorithms for them, distilling the concepts underlying the algorithms,

and organizing the concepts and algorithms into a coherent mathematical

theory. Each new discovery adds to the permanent body of knowledge, but

each has its limitations.
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Mathematical Notation

We use the symbol , to mean “equals by definition.”

If P and Q are propositions, so too are ¬P (read as “not P”), P∨Q (“P

or Q”), P ∧ Q (“P and Q”), P ⇒ Q (“P implies Q”), and P ⇔ Q (“P is

equivalent to Q”). For equivalence, we often write “P if and only if Q”.

If P is a proposition and x is a variable, (∃x)P is a proposition (read as

“there exists x such that P”). If P is a proposition and x is a variable, (∀x)P
is a proposition (read as “for all x, P”); (∀x)P ⇔ (¬(∃x)¬P).

We use this vocabulary from set theory:

a ∈ X (“a is an element of X”)

X ⊂ Y (“X is a subset of Y”)

{a0, . . . ,an} (“the finite set with elements a0, . . . , and an”)

{a ∈ X|P(a)} (“the subset of X for which the predicate P holds”)

X ∪ Y (“the union of X and Y”)

X ∩ Y (“the intersection of X and Y”)

X× Y (“the direct product of X and Y”)

f : X→ Y (“f is a function from X to Y”)

f : X0 × X1 → Y (“f is a function from the product of X0 and X1 to Y”)

x 7→ E(x) (“x maps to E(x)”, always given following a function signature)

A closed interval [a,b] is the set of all elements x such that a 6 x 6 b.

An open interval (a,b) is the set of all elements x such that a < x < b.

A half-open-on-right interval [a,b) is the set of all elements x such that

a 6 x < b. A half-open-on-left interval (a,b] is the set of all elements x

such that a < x 6 b. A half-open interval is our shorthand for half-open on

right. These definitions generalize to weak orderings.
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We use this notation in specifications, where i and j are iterators and n

is an integer:

i ≺ j (“i precedes j”)

i � j (“i precedes or equals j”)

[i, j) (“half-open bounded range from i to j”)

[i, j] (“closed bounded range from i to j”)

Ji,nM (“half-open weak or counted range from i for n > 0”)

Ji,nK (“closed weak or counted range from i for n > 0”)

We use this terminology when discussing concepts:

Weak refers to weakening, which includes dropping, an axiom. For ex-

ample, a weak ordering replaces equality with equivalence.

Semi refers to dropping an operation. For example, a semigroup lacks

the inverse operation.

Partial refers to restricting the definition space. For example, partial

subtraction (cancellation) a− b is defined when a > b.
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Programming Language

Sean Parent and Bjarne Stroustrup

This appendix defines the subset of C++ used in the book. To sim-

plify the syntax, we use a few library facilities as intrinsics. These intrinsics

are not written in this subset but take advantage of other C++ features. Sec-

tion B.1 defines this subset; Section B.2 specifies the implementation of the

intrinsics.

B.1 Language Definition

Syntax Notation

An Extended Backus-Naur Form designed by Niklaus Wirth is used. Wirth

[1977, pages 822–823] describes it as follows:

The word identifier is used to denote nonterminal symbol, and

literal stands for terminal symbol. For brevity, identifier and

character are not defined in further detail.

syntax = {production}.

production = identifier "=" expression ".".

expression = term {"|" term}.

term = factor {factor}.

factor = identifier | literal

231



232 Programming Language

| "(" expression ")"

| "[" expression "]"

| "{" expression "}".

literal = """" character {character} """".

Repetition is denoted by curly brackets, i.e. {a} stands for ε | a

| aa | aaa | .... Optionality is expressed by square brack-

ets, i.e. [a] stands for a | ε . Parentheses merely serve for

grouping, e.g. (a | b) c stands for ac | bc. Terminal sym-

bols, i.e. literals, are enclosed in quote marks (and, if a quote

mark appears as a literal itself, it is written twice).

Lexical Conventions

The following productions give the syntax for identifiers and literals:

identifier = (letter | "_") {letter | "_" | digit}.

literal = boolean | integer | real.

boolean = "false" | "true".

integer = digit {digit}.

real = integer "." [integer] | "." integer.

Comments extend from two slashes to the end of the line:

comment = "//" {character} eol.

Basic Types

Three C++ types are used: bool has values false and true, int has signed

integer values, and double has IEEE 64-bit floating-point values:

basic_type = "bool" | "int" | "double".

Expressions

Expressions may be either runtime or compile time. Compile-time expres-

sions may evaluate to either a value or a type.

Expressions are defined by the following grammar. Operators in inner

productions—those appearing lower in the grammar—have a higher order

of precedence than those in outer productions:

expression = conjunction {"||" conjunction}.

conjunction = equality {"&&" equality}.
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equality = relational {("==" | "!=") relational}.

relational = additive {("<" | ">" | "<=" | ">=") additive}.

additive = multiplicative {("+" | "-") multiplicative}.

multiplicative = prefix {("*" | "/" | "%") prefix}.

prefix = ["-" | "!" | "const"] postfix.

postfix = primary {"." identifier

| "(" [expression_list] ")"

| "[" expression "]"

| "&"}.

primary = literal | identifier | "(" expression ")"

| basic_type | template_name | "typename".

expression_list = expression {"," expression}.

The || and && operators designate ∨ (disjunction) and ∧ (conjunction),

respectively. The operands must be Boolean values. The first operand is

evaluated prior to the second operand. If the first operand determines the

outcome of the expression (true for ||, or false for &&), the second operand

is not evaluated, and the result is the value of the first operand. Prefix ! is

¬ (negation) and must be applied to a Boolean value.

== and != are, respectively, equality and inequality operators and return

a Boolean value.

<, >, <=, and >= are, respectively, less than, greater than, less or equal,

and greater or equal, also returning a Boolean value.

+ and - are, respectively, addition and subtraction; prefix - is additive

inverse.

*, /, and % are, respectively, multiplication, division, and remainder.

Postfix . (dot) takes an object of structure type and returns the mem-

ber corresponding to the identifier following the dot. Postfix () takes a

procedure or object on which the apply operator is defined and returns the

result of invoking the procedure or function object with the given argu-

ments. When applied to a type, () performs a construction using the given

arguments; when applied to a type function, it returns another type. Postfix

[] takes an object on which the index operator is defined and returns the

element whose position is determined by the value of the expression within

the brackets.

Prefix const is a type operator returning a type that is a constant version

of its operand. When applied to a reference type, the resulting type is a

reference to a constant version of the reference base type.

Postfix & is a type operator returning a reference type of its operand.
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Enumerations

An enumeration generates a type with a unique value corresponding to each

identifier in the list. The only operations defined on enumerations are those

of regular types: equality, relational operations, inequality, construction,

destruction, and assignment:

enumeration = "enum" identifier "{" identifier_list "}" ";".

identifier_list = identifier {"," identifier}.

Structures

A structure is a type consisting of a heterogeneous tuple of named, typed

objects called data members. Each data member is either an individual

object or an array of constant size. In addition, the structure may include

definitions of constructors, a destructor, member operators (assignment,

application, and indexing), and local typedefs. A structure with an apply

operator member is known as a function object . Omitting the structure

body allows a forward declaration.

structure = "struct" structure_name [structure_body] ";".

structure_name = identifier.

structure_body = "{" {member} "}".

member = data_member

| constructor | destructor

| assign | apply | index

| typedef.

data_member = expression identifier ["[" expression "]"] ";".

constructor = structure_name "(" [parameter_list] ")"

[":" initializer_list] body.

destructor = "~" structure_name "(" ")" body.

assign = "void" "operator" "="

"(" parameter ")" body.

apply = expression "operator" "(" ")"

"(" [parameter_list] ")" body.

index = expression "operator" "[" "]"

"(" parameter ")" body.

initializer_list = initializer {"," initializer}.

initializer = identifier "(" [expression_list] ")".
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A constructor taking a constant reference to the type of the structure is a

copy constructor. If a copy constructor is not defined, a member-by-member

copy constructor is generated. A constructor with no arguments is a default

constructor. A member-by-member default constructor is generated only if

no other constructors are defined. If an assignment operator is not defined,

a member-by-member assignment operator is generated. If no destructor is

supplied, a member-by-member destructor is generated. Each identifier in

an initializer list is the identifier of a data member of the structure. If a

constructor contains an initializer list, every data member of the structure

is constructed with a constructor matching1 the expression list of the ini-

tializer; all these constructions occur before the body of the constructor is

executed.

Procedures

A procedure consists of its return type or, when no value is returned, void,

followed by its name and parameter list. The name may be an identifier

or an operator. A parameter expression must yield a type. A procedure

signature without a body allows a forward declaration.

procedure = (expression | "void") procedure_name

"(" [parameter_list] ")" (body | ";").

procedure_name = identifier | operator.

operator = "operator"

("==" | "<" | "+" | "-" | "*" | "/" | "%").

parameter_list = parameter {"," parameter}.

parameter = expression [identifier].

body = compound.

Only the listed operators can be defined. A definition for the operator

!= is generated in terms of ==; definitions for the operators >, <=, and >=

are generated in terms of <. When a procedure is called, the value of each

argument expression is bound to the corresponding parameter, and the body

of the procedure is executed.

Statements

Statements make up the body of procedures, constructors, destructors, and

member operators:

1. The matching mechanism performs overload resolution by exact matching without any

implicit conversions.
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statement = [identifier ":"]

(simple_statement | assignment

| construction | control_statement

| typedef).

simple_statement = expression ";".

assignment = expression "=" expression ";".

construction = expression identifier [initialization] ";".

initialization = "(" expression_list ")" | "=" expression.

control_statement = return | conditional | switch | while | do

| compound | break | goto.

return = "return" [expression] ";".

conditional = "if" "(" expression ")" statement

["else" statement].

switch = "switch" "(" expression ")" "{" {case} "}".

case = "case" expression ":" {statement}.

while = "while" "(" expression ")" statement.

do = "do" statement

"while" "(" expression ")" ";".

compound = "{" {statement} "}".

break = "break" ";".

goto = "goto" identifier ";".

typedef = "typedef" expression identifier ";".

A simple statement, which is often a procedure call, is evaluated for its

side effects. An assignment applies the assignment operator for the type

of the object on the left-hand side. The first expression for a construction

is a type expression giving the type to be constructed. A construction

without an initialization applies the default constructor. A construction

with a parenthesized expression list applies the matching constructor. A

construction with an equal sign followed by an expression applies the copy

constructor; the expression must have the same type as the object being

constructed.

The return statement returns control to the caller of the current func-

tion with the value of the expression as the function result. The expression

must evaluate to a value of the return type of the function.

The conditional statement executes the first statement if the value of the

expression is true; if the expression is false and there is an else clause, the

second statement is executed. The expression must evaluate to a Boolean.

The switch statement evaluates the expression and then executes the

first statement following a case label with matching value; subsequent state-
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ments are executed to the end of the switch statement or until a break

statement is executed. The expression in a switch statement must evaluate

to an integer or enumeration.

The while statement repeatedly evaluates the expression and executes

the statement as long as the expression is true. The do statement repeatedly

executes the statement and evaluates the expression until the expression is

false. In either case, the expression must evaluate to a Boolean.

The compound statement executes the sequence of statements in order.

The goto statement transfers execution to the statement following the

corresponding label in the current function.

The break statement terminates the execution of the smallest enclosing

switch, while, or do statement; execution continues with the statement

following the terminated statement.

The typedef statement defines an alias for a type.

Templates

A template allows a structure or procedure to be parameterized by one or

more types or constants. Template definitions and template names use <

and > as delimiters.2

template = template_decl

(structure | procedure | specialization).

specialization = "struct" structure_name "<" additive_list ">"

[structure_body] ";".

template_decl = "template" "<" [parameter_list] ">" [constraint].

constraint = "requires" "(" expression ")".

template_name = (structure_name | procedure_name)

["<" additive_list ">"].

additive_list = additive {"," additive}.

When a template name is used as a primary, the template definition is

used to generate a structure or procedure with template parameters replaced

by corresponding template arguments. These template arguments are either

given explicitly as the delimited expression list in the template name or, for

procedures, may be deduced from the procedure argument types.

2. To disambiguate between the use of < and > as relations or as template name delimiters,

once a structure name or procedure name is parsed as part of a template, it becomes a

terminal symbol.
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A template structure can be specialized, providing an alternative defini-

tion for the template that is considered when the arguments match before

the unspecialized version of the template structure.

When the template definition includes a constraint, the template ar-

gument types and values must satisfy the Boolean expression following

requires.

Intrinsics

pointer(T) is a type constructor that returns the type pointer to T. If x is an

object of type T, addressof(x) returns a value of type pointer(T) referring

to x. source, sink, and deref are unary functions defined on pointer types.

source is defined for all pointer types and returns a corresponding constant

reference; see Section 6.1. sink and deref are defined for pointer types

to nonconstant objects and return corresponding nonconstant references;

see Section 9.1. reinterpret cast is a function template that takes a

reference type and an object (passed by reference) and returns a reference

of the reference type to the same object. The object must also have a valid

interpretation with the reference type.

B.2 Macros and Trait Structures

To allow the language defined in Section B.1 to compile as a valid C++

program, a few macros and structure definitions are necessary.

Template Constraints

The requires clause is implemented with this macro:3

#define requires(...)

Intrinsics

pointer(T) and addressof(x) are introduced to give us a simple linear

notation and allow simple top-down parsing. They are implemented as

#define pointer(T) T*

3. This implementation treats requirements as documentation only.
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template<typename T>

pointer(T) addressof(T& x)

{

return &x;

}

Type Functions

Type functions are implemented by using a C++ technique called a trait

class. For each type function—say, ValueType—we define a corresponding

structure template: say, value type<T>. The structure template contains

one typedef, named type by convention; if appropriate, a default can be

provided in the base structure template:

template<typename T>

struct value_type

{

typedef T type;

};

To provide a convenient notation, we define a macro4 that extracts the

typedef as the result of the type function:

#define ValueType(T) typename value_type< T >::type

We refine the global definition for a particular type by specializing:

template<typename T>

struct value_type<pointer(T)>

{

typedef T type;

};

4. Such a macro works only inside a template definition, because of the use of the keyword

typename.
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Symbols

→ (function), 229

− (additive inverse), in additive

group, 65

∧ (and), 229

− (difference)

in additive group, 65

in cancellable monoid, 70

of integers, 18

of iterator and integer, 108

of iterators, 91

× (direct product), 229

∈ (element), 229

= (equality), 7

for array k, 210

for pair, 208

, (equals by definition), 12, 229

⇔ (equivalent), 229

∃ (exists), 229

∀ (for all), 229

> (greater), 60

> (greater or equal), 60

⇒ (implies), 229

[ ] (index)

for array k, 209

for bounded range, 212

6= (inequality), 7, 60

∩ (intersection), 229

< (less), 60

for array k, 210

natural total ordering, 59

for pair, 208

6 (less or equal), 60

7→ (maps to), 229

¬ (not), 229

∨ (or), 229

an (power of associative operation),

30

fn (power of transformation), 18

≺ (precedes), 93

� (precedes or equal), 93

· (product)

of integers, 18

in multiplicative semigroup, 64

in semimodule, 67

/ (quotient), of integers, 18

[f, l] (range, closed bounded), 92

Jf,nK (range, closed weak or

counted), 92

[f, l) (range, half-open bounded), 92

Jf,nM (range, half-open weak or

counted), 92

⊂ (subset), 229

+ (sum)

in additive semigroup, 64

of integers, 18

of iterator and integer, 90

∪ (union), 229

A

abs algorithm, 16, 69

absolute value, properties, 69

abstract entity, 1
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abstract genus, 2

abstract procedure, 13

overloading, 41

abstract species, 2

accumulation procedure, 44

accumulation variable

elimination, 36

introduction, 33

action, 28

acyclic descendants of bifurcate

coordinate, 114

add to counter algorithm, 197

additive inverse (−), in additive

group, 65

AdditiveGroup concept, 65

AdditiveMonoid concept, 65

AdditiveSemigroup concept, 64

address, 4

abstracted by iterator, 87

advance tail machine, 133

algorithm, see machine

abs, 16, 69

add to counter, 197

all, 95

bifurcate compare, 129

bifurcate compare nonempty,

128

bifurcate equivalent, 127

bifurcate equivalent nonempty,

126

bifurcate isomorphic, 124

bifurcate isomorphic nonempty,

123

circular, 25

circular nonterminating orbit, 24

collision point, 22

collision point nonterminating orbit,

23

combine copy, 158

combine copy backward, 160

combine linked nonempty, 137

combine ranges, 194

compare strict or reflexive,

55–56

complement, 48

complement of converse, 48

connection point, 26

connection point nonterminating orbit,

26

convergent point, 25

converse, 48

copy, 150

copy backward, 153

copy bounded, 151

copy if, 156

copy n, 152

copy select, 156

count if, 95

cycle from, 171

cycle to, 170

distance, 19

euclidean norm, 16

exchange values, 162

fast subtractive gcd, 76

fibonacci, 44

find, 94

find adjacent mismatch, 100

find adjacent mismatch forward,

103, 134

find backward if, 109

find if, 95

find if not, 95

find if not unguarded, 99

find if unguarded, 99

find last, 134

find mismatch, 99

find n, 99

find not, 94

for each, 94

for each n, 98

gcd, 77, 78

height, 120

height recursive, 116

increment, 89

is left successor, 117

is right successor, 118
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k rotate from permutation indexed,

178

k rotate from permutation random access,

177

largest doubling, 73

lexicographical compare, 127

lexicographical equal, 125

lexicographical equivalent, 125

lexicographical less, 128

lower bound n, 106

lower bound predicate, 105

median 5, 58

memory-adaptive, 175

merge copy, 161

merge copy backward, 161

merge linked nonempty, 140

merge n adaptive, 203

merge n with buffer, 200

none, 95

not all, 95

orbit structure, 27

orbit structure nonterminating orbit,

27

partition bidirectional, 192

partition copy, 158

partition copy n, 158

partition linked, 139

partition point, 104

partition point n, 104

partition semistable, 190

partition single cycle, 192

partition stable iterative, 199

partition stable n, 195

partition stable n adaptive, 195

partition stable n nonempty,

195

partition stable singleton, 193

partition stable with buffer, 193

partition trivial, 196

partitioned at point, 189

phased applicator, 145

potential partition point, 189

power, 40

power accumulate, 39

power accumulate positive, 39

power left associated, 31

power right associated, 31

power unary, 18

predicate source, 138

quotient remainder, 83

quotient remainder nonnegative,

80

quotient remainder nonnegative iterative,

80

reachable, 119

reduce, 97

reduce balanced, 198

reduce nonempty, 97

reduce nonzeroes, 98

relation source, 139

remainder, 82

remainder nonnegative, 72

remainder nonnegative iterative,

73

reverse append, 138

reverse bidirectional, 173

reverse copy, 154

reverse copy backward, 155

reverse indexed, 183

reverse linked, 138

reverse n adaptive, 175

reverse n bidirectional, 173

reverse n forward, 174

reverse n indexed, 173

reverse n with buffer, 174

reverse n with temporary buffer,

184, 223

reverse swap ranges, 165

reverse swap ranges bounded,

165

reverse swap ranges n, 166

rotate, 184

rotate bidirectional nontrivial,

180

rotate cycles, 178

rotate forward annotated, 181
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rotate forward nontrivial, 182

rotate forward step, 181

rotate indexed nontrivial, 179

rotate nontrivial, 185

rotate partial nontrivial, 182

rotate random access nontrivial,

179

rotate with buffer backward nontrivial,

183

rotate with buffer nontrivial,

182

select 0 2, 51, 60

select 0 3, 52

select 1 2, 51

select 1 3, 53

select 1 3 ab, 53

select 1 4, 54, 57

select 1 4 ab, 54, 56

select 1 4 ab cd, 54, 56

select 2 3, 52

select 2 5, 58

select 2 5 ab, 58

select 2 5 ab cd, 57

slow quotient, 71

slow remainder, 70

some, 95

sort linked nonempty n, 140

sort n, 204

sort n adaptive, 204

sort n with buffer, 201

split copy, 157

split linked, 135

subtractive gcd, 76

subtractive gcd nonzero, 74

swap, 222

swap basic, 221

swap ranges, 163

swap ranges bounded, 164

swap ranges n, 164

terminating, 23

transpose operation, 198

traverse, 121

traverse nonempty, 117

traverse phased rotating, 146

traverse rotating, 144

underlying ref, 222

upper bound n, 106

upper bound predicate, 106

weight, 120

weight recursive, 115

weight rotating, 145

aliased property, 148

aliased write-read, 148

aliased write-write, 157

all algorithm, 95

ambiguous value type, 3

amortized complexity, 218

and (∧), 229

annihilation property, 66

annotation variable, 181

ArchimedeanGroup concept, 81

ArchimedeanMonoid concept, 70

area of object, 225

Aristotle, 75

Arity type attribute, 11

array, varieties, 218–219

array k type, 209

Artin, Emil, 13

assignment, 7

for array k, 209

for pair, 208

associative operation, 29, 96

power of (an), 30

associative property, 29

exploited by power, 31

partially associative, 96

of permutation composition,

168

asymmetric property, 48

attribute, 1

auxiliary computation during

recursion, 174

Axiom of Archimedes, 70, 71

B

backward movement in range, 108

backward offset property, 159
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BackwardLinker concept, 132

basic singly linked list, 216

begin

for array k, 209

for bounded range, 212

for Linearizable, 211

behavioral equality, 3, 225

BidirectionalBifurcateCoordinate

concept, 117–118

BidirectionalIterator concept, 108

BidirectionalLinker concept, 132

bifurcate compare algorithm, 129

bifurcate compare nonempty

algorithm, 128

bifurcate equivalent algorithm, 127

bifurcate equivalent nonempty

algorithm, 126

bifurcate isomorphic algorithm, 124

bifurcate isomorphic nonempty

algorithm, 123

BifurcateCoordinate concept, 113

binary scale down nonnegative, 38

binary scale up nonnegative, 38

BinaryOperation concept, 29

bisection technique, 104

Bolzano, Bernard, 104

bounded integer type, 85

bounded range, 91

bounded range property, 91

bounded range type, 212

Brandt, Jon, 191

C

C++ programming language, xii

CancellableMonoid concept, 70

cancellation in monoid, 70

categories of ideas, 1

Cauchy, Augustin Louis, 104

circular algorithm, 25

circular array, 218

circular doubly linked list, 216

circular singly linked list, 216

circular nonterminating orbit

algorithm, 24

closed bounded range ([f, l]), 92

closed interval, 229

closed weak or counted range

(Jf,nK), 92

clusters of derived procedures, 60

codomain, 10

Codomain type function, 11

Collins, George, 13

collision point of orbit, 21

collision point algorithm, 22

collision point nonterminating orbit

algorithm, 23

combine copy algorithm, 158

combine copy backward algorithm,

160

combine linked nonempty algorithm,

137

combine ranges algorithm, 194

common-subexpression elimination,

33

commutative property, 64

CommutativeRing concept, 67

CommutativeSemiring concept, 66

compare strict or reflexive algorithm,

55–56

complement algorithm, 48

complement of converse of relation,

48

complement of relation, 48

complement of converse algorithm,

48

complement of converse property,

101

complexity

amortized, 218

of empty, 211

of indexing of a sequence, 211

power left associated vs.

power 0, 32

of regular operations, 225

of source, 88

of successor, 90

composite object, 214
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composition

of permutations, 168

of transformations, 17, 30

computational basis, 6

concept, 11

AdditiveGroup, 65

AdditiveMonoid , 65

AdditiveSemigroup, 64

ArchimedeanGroup, 81

ArchimedeanMonoid , 70

BackwardLinker , 132

BidirectionalBifurcateCoordinate,

117–118

BidirectionalIterator , 108

BidirectionalLinker , 132

BifurcateCoordinate, 113

BinaryOperation, 29

CancellableMonoid , 70

CommutativeRing , 67

CommutativeSemiring , 66

consistent, 84

DiscreteArchimedeanRing , 84

DiscreteArchimedeanSemiring ,

83

EmptyLinkedBifurcateCoordinate,

142

EuclideanMonoid , 75

EuclideanSemimodule, 78

EuclideanSemiring , 77

examples from C++ and STL,

11

ForwardIterator , 103

ForwardLinker , 132

FunctionalProcedure, 11

HalvableMonoid , 72

HomogeneousFunction, 12

HomogeneousPredicate, 16

IndexedIterator , 107

Integer , 18, 38

Iterator , 89

Linearizable, 211

LinkedBifurcateCoordinate,

142

modeled by type, 11

Module, 68

MultiplicativeGroup, 66

MultiplicativeMonoid , 65

MultiplicativeSemigroup, 64

Mutable, 148

NonnegativeDiscreteArchimedeanSemiring ,

83

Operation, 16

OrderedAdditiveGroup, 68

OrderedAdditiveMonoid , 68

OrderedAdditiveSemigroup, 68

Predicate, 16

RandomAccessIterator ,

109–110

Readable, 88

refinement, 11

Regular , 11

Relation, 47

relational concept, 67

Ring , 67

Semimodule, 67

Semiring , 66

Sequence, 214

TotallyOrdered , 59

Transformation, 17

type concept, 11

UnaryFunction, 12

UnaryPredicate, 16

univalent, 84

useful, 84

weakening, 11

Writable, 147

concept dispatch, 103, 184

concept schema

composite object, 214

coordinate structure, 122

concept tag type, 184

concrete entity, 1

concrete genus, 2

concrete species, 2

connectedness of composite object,

214
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connection point of orbit, 20

connection point algorithm, 26

connection point nonterminating orbit

algorithm, 26

connectors, 227

consistency of concept’s axioms, 84

constant-size sequence, 214

constructor, 8

container, 211

convergent point algorithm, 25

converse algorithm, 48

converse of relation, 48

coordinate structure

bifurcate coordinate, 113

of composite object, 214

concept schema, 122

iterator, 87

copy algorithm, 150

copy constructor, 8

for array k, 209

for pair, 208

copy of object, 6

copy backward algorithm, 153

copy backward step machine, 152

copy bounded algorithm, 151

copy if algorithm, 156

copy n algorithm, 152

copy select algorithm, 156

copy step machine, 150

copying rearrangement, 170

count down machine, 152

count if algorithm, 95

counted range property, 91

counter machine type, 197

cycle detection intuition, 21

cycle in a permutation, 169

cycle of orbit, 20

cycle size, 20

cycle from algorithm, 171

cycle to algorithm, 170

cyclic element under

transformation, 19

cyclic permutation, 169

D

DAG (directed acyclic graph), 114

datum, 2

de Bruijn, N. G., 72

default constructor, 8

for array k, 209

for pair, 208

default ordering, 59

default total ordering, 59

importance of, 226

definition space, 10

definition-space predicate, 17

dependence of axiom, 84

deref, 148

derived relation, 48

descendant of bifurcate coordinate,

114

destructor, 8

for pair, 208

difference (−)

in additive group, 65

in cancellable monoid, 70

of integers, 18

of iterator and integer, 108

of iterators, 91

DifferenceType type function, 109

direct product (×), 229

directed acyclic graph, 114

DiscreteArchimedeanRing concept,

84

DiscreteArchimedeanSemiring

concept, 83

discreteness property, 83

disjoint property, 132

disjointness of composite object,

214

distance algorithm, 19

distance in orbit, 19

DistanceType type function, 17, 89

distributive property, holds for

semiring, 66

divisibility on an Archimedean

monoid, 73
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division, 66

domain, 10

Domain type function, 12

double-ended array, 218

doubly linked list, 216–217

Dudziński, Krzysztof, 203

dummy node doubly linked list, 216

Dydek, Andrzej, 203

dynamic-size sequence, 215

E

efficient computational basis, 6

element (∈), 229

eliminating common subexpression,

33

empty

for array k, 211

for bounded range, 212

for Linearizable, 211

empty coordinate, 142

empty range, 92

EmptyLinkedBifurcateCoordinate

concept, 142

end

for array k, 209

for bounded range, 212

for Linearizable, 211

entity, 1

equality

=, 7

6=, 60

for array k, 210

behavioral, 3, 225

equal for Regular , 125

for objects, 6

for pair, 208

for regular type, 7

representational, 3, 226

structural, 226

for uniquely represented type,

3

for value type, 3

equals by definition (,), 12, 229

equational reasoning, 4

equivalence class, 49

equivalence property, 49

equivalent (⇔), 229

equivalent coordinate collections,

124

erasure in a sequence, 215

Euclidean function, 77

euclidean norm algorithm, 16

EuclideanMonoid concept, 75

EuclideanSemimodule concept, 78

EuclideanSemiring concept, 77

even, 38

exchange values algorithm, 162

exists (∃), 229

expressive computational basis, 7

F

fast subtractive gcd algorithm, 76

fibonacci algorithm, 44

Fibonacci sequence, 42

find algorithm, 94

find adjacent mismatch algorithm,

100

find adjacent mismatch forward

algorithm, 103, 134

find backward if algorithm, 109

find if algorithm, 95

find if not algorithm, 95

find if not unguarded algorithm, 99

find if unguarded algorithm, 99

find last algorithm, 134

find mismatch algorithm, 99

find n algorithm, 99

find not algorithm, 94

finite order, under associative

operation, 30

finite set, 169

first-last singly linked list, 216

fixed point of transformation, 168

fixed-size sequence, 215

Floyd, Robert W., 21

for all (∀), 229

for each algorithm, 94

for each n algorithm, 98
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forward offset property, 160

ForwardIterator concept, 103

ForwardLinker concept, 132

Frobenius, Georg Ferdinand, 30

from-permutation, 170

function, 2

→, 229

on abstract entities, 2

on values, 3

function object, 9, 94, 234

functional procedure, 9

FunctionalProcedure concept, 11

G

garbage collection, 228

Gaussian integers, 38

Stein’s algorithm, 79

gcd, 74

Stein, 78

subtractive, 74

gcd algorithm, 77, 78

genus, 2

global state, 6

goto statement, 146

greater (>), 60

greater or equal (>), 60

greatest common divisor (gcd), 74

group, 65

of permutations, 168

H

half nonnegative, 38

half-open bounded range ([f, l)), 92

half-open interval, 229

half-open weak or counted range

(Jf,nM), 92

HalvableMonoid concept, 72

handle of orbit, 20

handle size, 20

header of composite object, 215

height algorithm, 120

height of bifurcate coordinate

(DAG), 114

height recursive algorithm, 116

Ho, Wilson, 179

Hoare, C. A. R., 192

homogeneous functional procedure,

10

HomogeneousFunction concept, 12

HomogeneousPredicate concept, 16

I

ideas, categories of, 1

identity

of concrete entity, 1

of object, 5

identity element, 63

identity token, 5

identity transformation, 168

identity element property, 63

implies (⇒), 229

inconsistency of concept, 84

increasing range, 101

increasing counted range property,

102

increasing range property, 102

increment algorithm, 89

independence of proposition, 84

index ([ ])

for array k, 209

for bounded range, 212

index permutation, 169

index of segmented array, 219–220

indexed iterator

equivalent to random-access

iterator, 110

IndexedIterator concept, 107

inequality (6=), 7

standard definition, 60

inorder, 116

input object, 6

input/output object, 6

InputType type function, 11

insertion in a sequence, 215

Integer concept, 18, 38

interpretation, 2

intersection (∩), 229

interval, 229
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into transformation, 167

invariant, 146

loop, 35

recursion, 34

inverse of permutation, 168, 169

inverse operation property, 64

is left successor algorithm, 117

is right successor algorithm, 118

isomorphic coordinate sets, 122

isomorphic types, 84

iterator adapter

for bidirectional bifurcate

coordinates, project, 121

random access from indexed,

110

reverse from bidirectional, 109

underlying type, 223

Iterator concept, 89

linked, 131

iterator invalidation in array, 219

IteratorConcept type function, 184

IteratorType type function, 132, 211

K

k rotate from permutation indexed

algorithm, 178

k rotate from permutation random access

algorithm, 177

Kislitsyn, Sergei, 53

L

Lagrange, J.-L., 104

Lakshman, T. K., 157

largest doubling algorithm, 73

less (<), 60

for array k, 210

for bounded range, 213

less for TotallyOrdered , 127

natural total ordering, 59

for pair, 208

less or equal (6), 60

lexicographical compare algorithm,

127

lexicographical equal algorithm, 125

lexicographical equivalent algorithm,

125

lexicographical less algorithm, 128

limit in a range, 93

linear ordering, 50

Linearizable concept, 211

link rearrangement, 133

on lists, 217

linked iterator, 131

linked structures, forward vs.

bidirectional, 217

LinkedBifurcateCoordinate concept,

142

linker object, 131, 132

linker to head machine, 138

linker to tail machine, 134

links, reversing, 142

list

doubly linked, 216

singly linked, 216

Lo, Raymond, 179

load, 4

local part of composite object, 215

local state, 6

locality of reference, 141

loop invariant, 35

lower bound, 104

lower bound n algorithm, 106

lower bound predicate algorithm,

105

M

machine, 118

advance tail, 133

copy backward step, 152

copy step, 150

count down, 152

linker to head, 138

linker to tail, 134

merge n step 0, 202

merge n step 1, 203

reverse copy backward step, 154

reverse copy step, 154

reverse swap step, 164
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swap step, 163

traverse step, 119

tree rotate, 143

maps to ( 7→), 229

marking, 116

Mauchly, John W., 104

median 5 algorithm, 58

memory, 4

memory-adaptive algorithm, 175

merge, stability, 200

merge copy algorithm, 161

merge copy backward algorithm, 161

merge linked nonempty algorithm,

140

merge n adaptive algorithm, 203

merge n step 0 machine, 202

merge n step 1 machine, 203

merge n with buffer algorithm, 200

mergeable property, 200

mod (remainder), 18

model, partial, 68

models, 11

Module concept, 68

monoid, 65

multipass traversal, 103

MultiplicativeGroup concept, 66

MultiplicativeMonoid concept, 65

MultiplicativeSemigroup concept, 64

multiset, 225

Musser, David, 13

Mutable concept, 148

mutable range, 149

mutable bounded range property,

149

mutable counted range property, 149

mutable weak range property, 149

mutative rearrangement, 170

N

natural total ordering, < reserved

for, 59

negative, 38

nil, 132

Noether, Emmy, 13

noncircularity of composite object,

214

none algorithm, 95

NonnegativeDiscreteArchimedeanSemiring

concept, 83

nontotal procedure, 17

not (¬), 229

not all algorithm, 95

not overlapped property, 155

not overlapped backward property,

153

not overlapped forward property, 151

not write overlapped property, 157

null link, 216

O

object, 4

area, 225

equality, 6

starting address, 214

state, 4

object type, 4

odd, 38

one, 38

one-to-one transformation, 167

onto transformation, 167

open interval, 229

Operation concept, 16

or (∨), 229

orbit, 18–21

orbit structure algorithm, 27

orbit structure nonterminating orbit

algorithm, 27

OrderedAdditiveGroup concept, 68

OrderedAdditiveMonoid concept, 68

OrderedAdditiveSemigroup concept,

68

ordering, linear, 50

ordering-based rearrangement, 170

output object, 6

overloading, 41, 132, 142

own state, 6

ownership, of parts by composite

object, 214
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P

pair type, 11, 208

parameter passing, 9

part of composite object, 214–218

partial model, 68

partial procedure, 17

partial (usage convention), 230

partially formed object state, 8

partially associative property, 96

partition algorithm, origin of, 192

partition point, 102

lower and upper bounds, 104

partition rearrangement,

semistable, 190

partition bidirectional algorithm, 192

partition copy algorithm, 158

partition copy n algorithm, 158

partition linked algorithm, 139

partition point algorithm, 104

partition point n algorithm, 104

partition semistable algorithm, 190

partition single cycle algorithm, 192

partition stable iterative algorithm,

199

partition stable n algorithm, 195

partition stable n adaptive

algorithm, 195

partition stable n nonempty

algorithm, 195

partition stable singleton algorithm,

193

partition stable with buffer

algorithm, 193

partition trivial algorithm, 196

partitioned property, 102

partitioned range, 102

partitioned at point algorithm, 189

permanently placed part of

composite object, 216

permutation, 168

composition, 168

cycle, 169

cyclic, 169

from, 170

index, 169

inverse, 168, 169

product of its cycles, 169

reverse, 172

rotation, 175

to, 170

transposition, 169

permutation group, 168

phased applicator algorithm, 145

pivot, 202

position-based rearrangement, 170

positive, 38

postorder, 116

potential partition point algorithm,

189

power

of associative operation (an),

30

powers of same element

commute, 30

of transformation (fn), 18

power algorithm, 40

operation count, 32

power accumulate algorithm, 39

power accumulate positive

algorithm, 39

power left associated algorithm, 31

power right associated algorithm, 31

power unary algorithm, 18

precedence preserving link

rearrangement, 133

precedes (≺), 93

precedes or equal (�), 93

precondition, 13

predecessor

of integer, 38

of iterator, 108

Predicate concept, 16

predicate-based rearrangement, 170

predicate source algorithm, 138

prefix of extent, 218

preorder, 116
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prime property, 14

procedure, 6

abstract, 13

functional, 9

nontotal, 17

partial, 17

total, 17

product (·)
of integers, 18

in multiplicative semigroup, 64

in semimodule, 67

program transformation

accumulation-variable

elimination, 36

accumulation-variable

introduction, 33

common-subexpression

elimination, 33

enabled by regular types, 33

forward to backward iterators,

109

relaxing precondition, 36

strengthening precondition, 36

strict tail-recursive, 35

tail-recursive form, 33

project

abstracting platform-specific

copy algorithms, 162

algorithms for bidirectional

bifurcate algorithms, 121

axioms for random-access

iterator, 110

benchmark and composite

algorithm for rotate, 186

concepts for bounded binary

integers, 85

coordinate structure concept,

129

cross-type operations, 14

cycle-detection algorithms, 28

dynamic-sequences benchmark,

220

dynamic-sequences

implementation, 220

dynamic-sequences interfaces,

220

floating-point nonassociativity,

40

isomorphism, equivalence, and

ordering using tree rotate,

146

iterator adapter for

bidirectional bifurcate

coordinates, 121

linear recurrence sequences, 45

minimum-comparison stable

sorting and merging, 59

nonhalvable Archimedean

monoids, 73

order-selection stability, 59

reallocation strategy for

single-extent arrays, 219

searching for a subsequence

within a sequence, 110

setting for Stein gcd, 79

sorting library, 205

underlying type used in major

library, 223

projection regularity, 214

proper underlying type, 222

properly partial object type, 5

properly partial value type, 3

property

aliased, 148

annihilation, 66

associative, 29

asymmetric, 48

backward offset, 159

bounded range, 91

commutative, 64

complement of converse, 101

counted range, 91

discreteness, 83

disjoint, 132

distributive, 66

equivalence, 49
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forward offset, 160

identity element, 63

identity element, 63

increasing counted range, 102

increasing range, 102

inverse operation, 64

mergeable, 200

mutable bounded range, 149

mutable counted range, 149

mutable weak range, 149

not overlapped, 155

not overlapped backward, 153

not overlapped forward, 151

not write overlapped, 157

notation, 13

partially associative, 96

partitioned, 102

prime, 14

readable bounded range, 93

readable counted range, 93

readable tree, 121

readable weak range, 93

reflexive, 48

regular unary function, 14

relation preserving, 101

strict, 48

strictly increasing counted range,

102

strictly increasing range, 101

symmetric, 48

total ordering, 49

transitive, 47

tree, 115

trichotomy, 49

weak trichotomy, 49

weak ordering, 49

weak range, 90

writable bounded range, 148

writable counted range, 148

writable weak range, 148

write aliased, 157

proposition, independence of, 84

pseudopredicate, 134

pseudorelation, 136

pseudotransformation, 89

Q

quotient (/), of integers, 18

quotient

in Euclidean semimodule, 78

in Euclidean semiring, 77

quotient remainder algorithm, 83

quotient remainder nonnegative

algorithm, 80

quotient remainder nonnegative iterative

algorithm, 80

QuotientType type function, 70

R

random-access iterator, equivalent

to indexed iterator, 110

RandomAccessIterator concept,

109–110

range

backward movement, 108

closed bounded ([f, l]), 92

closed weak or counted

(Jf,nK), 92

empty, 92

half-open bounded ([f, l)), 92

half-open weak or counted

(Jf,nM), 92

increasing, 101

limit, 93

lower bound, 104

mutable, 149

partition point, 102

partitioned, 102

readable, 93

size, 92

strictly increasing, 101

upper bound, 104

writable, 148

reachability

of bifurcate coordinate, 114

in orbit, 18

reachable algorithm, 119
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Readable concept, 88

readable range, 93

readable bounded range property, 93

readable counted range property, 93

readable tree property, 121

readable weak range property, 93

rearrangement, 170

bin-based, 170

copying, 170

link, 133

mutative, 170

ordering-based, 170

position-based, 170

reverse, 172

rotation, 176

recursion invariant, 34

reduce algorithm, 97

reduce balanced algorithm, 198

reduce nonempty algorithm, 97

reduce nonzeroes algorithm, 98

reduction, 96

reference counting, 228

refinement of concept, 11

reflexive property, 48

Regular concept, 11

and program transformation,

33

regular function on value type, 4

regular type, 7–8

regular unary function property, 14

regularity, 214, 215

Relation concept, 47

relation preserving property, 101

relation source algorithm, 139

relational concept, 67

relationship, 227

relaxing precondition, 36

remainder

algorithm, 82

in Euclidean semimodule, 78

in Euclidean semiring, 77

remainder (mod), of integers, 18

remainder nonnegative algorithm, 72

remainder nonnegative iterative

algorithm, 73

remote part of composite object,

215

representation, 2

representational equality, 3, 226

requires clause, 13

syntax, 238

resources, 4

result space, 10

returning useful information, 85,

94, 98–100, 103, 108, 150,

151, 157, 161, 172, 176,

179, 210

reverse rearrangement, 172

reverse append algorithm, 138

reverse bidirectional algorithm, 173

reverse copy algorithm, 154

reverse copy backward algorithm,

155

reverse copy backward step machine,

154

reverse copy step machine, 154

reverse indexed algorithm, 183

reverse linked algorithm, 138

reverse n adaptive algorithm, 175

reverse n bidirectional algorithm,

173

reverse n forward algorithm, 174

reverse n indexed algorithm, 173

reverse n with buffer algorithm, 174

reverse n with temporary buffer

algorithm, 184, 223

reverse swap ranges algorithm, 165

reverse swap ranges bounded

algorithm, 165

reverse swap ranges n algorithm, 166

reverse swap step machine, 164

reversing links, 142

Rhind Mathematical Papyrus

division, 71

power, 31

Ring concept, 67
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rotate algorithm, 184

rotate bidirectional nontrivial

algorithm, 180

rotate cycles algorithm, 178

rotate forward annotated algorithm,

181

rotate forward nontrivial algorithm,

182

rotate forward step algorithm, 181

rotate indexed nontrivial algorithm,

179

rotate nontrivial algorithm, 185

rotate partial nontrivial algorithm,

182

rotate random access nontrivial

algorithm, 179

rotate with buffer backward nontrivial

algorithm, 183

rotate with buffer nontrivial

algorithm, 182

rotation

permutation, 175

rearrangement, 176

S

schema, concept, 122

Schreier, Jozef, 53

Schwarz, Jerry, 148

segmented array, 219

segmented index, 220

select 0 2 algorithm, 51, 60

select 0 3 algorithm, 52

select 1 2 algorithm, 51

select 1 3 algorithm, 53

select 1 3 ab algorithm, 53

select 1 4 algorithm, 54, 57

select 1 4 ab algorithm, 54, 56

select 1 4 ab cd algorithm, 54, 56

select 2 3 algorithm, 52

select 2 5 algorithm, 58

select 2 5 ab algorithm, 58

select 2 5 ab cd algorithm, 57

semi (usage convention), 230

semigroup, 64

Semimodule concept, 67

Semiring concept, 66

semistable partition rearrangement,

190

sentinel, 99

Sequence concept, 214

extent-based models, 218

linked models, 216

modeled by array kk,T , 214

set, 229

single-ended array, 218

single-extent array, 218

single-extent index, 220

single-pass traversal, 89

singly linked list, 216

sink, 147

size

for array k, 210

for bounded range, 212

for Linearizable, 211

size of an orbit, 20

size of a range, 92

SizeType type function, 211

slanted index, 220

slow quotient algorithm, 71

slow remainder algorithm, 70

snapshot, 1

some algorithm, 95

sort linked nonempty n algorithm,

140

sort n algorithm, 204

sort n adaptive algorithm, 204

sort n with buffer algorithm, 201

source, 88

space complexity, memory adaptive,

175

species

abstract, 2

concrete, 2

splicing link rearrangement, 217

split copy algorithm, 157

split linked algorithm, 135

stability, 50
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of merge, 200

of partition, 190

of sort, 201

of sort on linked range, 140

stability index, 50

Standard Template Library, xii

starting address, 4, 214

state of object, 4

Stein, Josef, 78

Stein gcd, 78

STL, xii

store, 4

strengthened relation, 51

strengthening precondition, 36

strict property, 48

strict tail-recursive, 35

strictly increasing range, 101

strictly increasing counted range

property, 102

strictly increasing range property,

101

structural equality, 226

subpart of composite object, 214

subset (⊂), 229

subtraction, in additive group, 65

subtractive gcd algorithm, 76

subtractive gcd nonzero algorithm,

74

successor

definition space on range, 92

of integer, 38

of iterator, 89

sum (+)

in additive semigroup, 64

of integers, 18

of iterator and integer, 90

swap algorithm, 222

swap basic algorithm, 221

swap ranges algorithm, 163

swap ranges bounded algorithm, 164

swap ranges n algorithm, 164

swap step machine, 163

symmetric complement of a

relation, 50

symmetric property, 48

T

tail-recursive form, 33

technique, see program

transformation

auxiliary computation during

recursion, 174

memory-adaptive algorithm,

175

operation–accumulation

procedure duality, 44

reduction to constrained

subproblem, 52

returning useful information,

85, 94, 98–100, 103, 108,

150, 151, 157, 161, 172,

176, 179, 210

transformation–action duality,

28

useful variations of an

interface, 36

temporary buffer type, 184

terminal element under

transformation, 19

terminating algorithm, 23

three-valued compare, 61

Tighe, Joseph, 176

to-permutation, 170

total object type, 5

total procedure, 17

total value type, 3

total ordering property, 49

TotallyOrdered concept, 59

trait class, 239

transformation, 17

composing, 17, 30

cyclic element, 19

fixed point of, 168

identity, 168

into, 167

of program, see program

transformation
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one-to-one, 167

onto, 167

orbit, 19

power of (fn), 18

terminal element, 19

Transformation concept, 17

transitive property, 47

transpose operation algorithm, 198

transposition, 169

traversal

multipass, 103

single-pass, 89

of tree, recursive, 117

traverse algorithm, 121

traverse nonempty algorithm, 117

traverse phased rotating algorithm,

146

traverse rotating algorithm, 144

traverse step machine, 119

tree property, 115

tree rotate machine, 143

trichotomy law, 49

triple type, 11

trivial cycle, 169

twice, 38

two-pointer header doubly linked

list, 217

type

array k, 209

bounded range, 212

computational basis, 6

counter machine, 197

isomorphism, 84

models concept, 11

pair, 11, 208

regular, 7

temporary buffer, 184

triple, 11

underlying iterator, 223

visit, 116

type attribute, 10

Arity, 11

type concept, 11

type constructor, 11

type function, 11

Codomain, 11

DifferenceType, 109

DistanceType, 17, 89

Domain, 12

implemented via trait class,

239

InputType, 11

IteratorConcept, 184

IteratorType, 132, 211

QuotientType, 70

SizeType, 211

UnderlyingType, 221

ValueType, 88, 147, 211

WeightType, 113

U

unambiguous value type, 3

UnaryFunction concept, 12

UnaryPredicate concept, 16

underlying type, 163, 221

iterator adapters, 223

proper, 222

underlying iterator type, 223

underlying ref algorithm, 222

UnderlyingType type function, 221

union (∪), 229

uniquely represented object type, 5

uniquely represented value type, 3

univalent concept, 84

upper bound, 104

upper bound n algorithm, 106

upper bound predicate algorithm,

106

useful variations of an interface, 36

usefulness of concept, 84

V

value, 2

value type, 2

ambiguous, 3

properly partial, 3

regular function on, 4
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total, 3

uniquely represented, 3

ValueType type function, 88, 147,

211

visit type, 116

W

weak (usage convention), 230

weak-trichotomy law, 49

weak ordering property, 49

weak range property, 90

weakening of concept, 11

weight algorithm, 120

weight recursive algorithm, 115

weight rotating algorithm, 145

WeightType type function, 113

well-formed object, 5

well-formed value, 2

words in memory, 4

Writable concept, 147

writable range, 148

writable bounded range property,

148

writable counted range property, 148

writable weak range property, 148

write aliased property, 157

Z

zero, 38
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